Welcome to the Riemann Lab

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed condimentum pellentesque nisl id pretium. Donec ultrices, erat eget vestibulum feugiat, orci nisl congue nunc, euismod dignissim nisl nunc a odio. Nunc ut massa mauris. Cras venenatis metus a massa lacinia, et fringilla magna scelerisque. Quisque risus tortor, venenatis et ligula quis, venenatis lobortis tellus. Ut aliquet dolor in est ornare, sit amet imperdiet enim convallis.
Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nunc a enim consequat, imperdiet enim nec, dictum odio. Vestibulum cursus rutrum mauris vel vestibulum.

Riemann Lab - News

Riemann Lab - Research

Science 2

Ut aliquet tempor quam, sit amet congue libero dignissim viverra. Proin rhoncus enim ac tincidunt tincidunt. Duis sapien magna, facilisis vitae dapibus at, lacinia quis turpis. Morbi orci tortor, tincidunt a tempor ullamcorper, volutpat sed ante. Etiam eu erat at arcu euismod luctus. Ut gravida ipsum augue, a tempus metus porta quis. Nam ultricies sit amet nisl sed aliquam. Nam eros lectus, facilisis sed magna quis, iaculis tempus massa. Aenean quis malesuada metus. Mauris venenatis pellentesque ligula ut euismod.

Read More

Science 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris ac laoreet ante, ac lacinia neque. Nam quis interdum metus. Cras vel sem eget ligula laoreet tempor vitae a sapien. Phasellus iaculis, sem eu tincidunt condimentum, diam libero gravida nibh, quis auctor massa sapien ultricies libero.

Read More

Science 2

Ut aliquet tempor quam, sit amet congue libero dignissim viverra. Proin rhoncus enim ac tincidunt tincidunt. Duis sapien magna, facilisis vitae dapibus at, lacinia quis turpis. Morbi orci tortor, tincidunt a tempor ullamcorper, volutpat sed ante. Etiam eu erat at arcu euismod luctus. Ut gravida ipsum augue, a tempus metus porta quis. Nam ultricies sit amet nisl sed aliquam. Nam eros lectus, facilisis sed magna quis, iaculis tempus massa. Aenean quis malesuada metus. Mauris venenatis pellentesque ligula ut euismod.

Read More

Science 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris ac laoreet ante, ac lacinia neque. Nam quis interdum metus. Cras vel sem eget ligula laoreet tempor vitae a sapien. Phasellus iaculis, sem eu tincidunt condimentum, diam libero gravida nibh, quis auctor massa sapien ultricies libero.

Read More

Riemann Lab - Team

Georg Friedrich Bernhard Riemann was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His famous 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as one of the most influential papers in analytic number theory. Through his pioneering contributions to differential geometry, Riemann laid the foundations of the mathematics of general relativity. He is considered by many to be one of the greatest mathematicians of all time.[3][4]

Download my CV:

Eduard Selling

Gustav Roch

Alumni
  • Gotthold Eisenstein: 

Visiting Scientist (1846-1848)

Eduard Selling

Gustav Roch

Alumni
  • Gotthold Eisenstein: 

Visiting Scientist (1846-1848)

Join us

Postdoctoral position on differential geometry 

Type: Postdoc
Expected start: 21/07/2021
Duration: 12 months
Location: Paris
Read More

We are continuously looking for motivated and talented students.

If you think that your CV could match the group activities, don’t hesitate to contact us.

Full Publication List

Ueber die anzahl der primzahlen unter einer gegebenen grosse
Riemann Bernhard
Ges. Math. Werke Und Wissenschaftlicher Nachlass (1859)
E-string theory on riemann surfaces
Kim Hee-cheol, Razamat Shlomo S, Vafa Cumrun, Zafrir Gabi

 - PDF download:

On relation of the riemann zeta function to its partial product definitions
Rahmati Vahid
Applied Mathematics E-notes (2020)

 - PDF download:

Riemann-hilbert correspondence and blown up surface defects
Jeong Saebyeok, Nekrasov Nikita
Journal Of High Energy Physics (2020)
The n-coupled higher-order nonlinear schrödinger equation: riemann-hilbert problem and multi-soliton solutions
Yang Jin-jie, Tian Shou-fu, Peng Wei-qi, Zhang Tian-tian
Mathematical Methods In The Applied Sciences (2020)
Coadjoint representation of the bms group on celestial riemann surfaces
Barnich Glenn, Ruzziconi Romain
Journal Of High Energy Physics (2021)