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E-String Theory on Riemann Surfaces

Hee-Cheol Kim, Shlomo S. Razamat, Cumrun Vafa,* and Gabi Zafrir

We study compactifications of the 6d E-string theory, the theory of a small E 8

instanton, to four dimensions. In particular we identify N = 1 field theories
in four dimensions corresponding to compactifications on arbitrary Riemann
surfaces with punctures and with arbitrary non-abelian flat connections as
well as fluxes for the abelian sub-groups of the E 8 flavor symmetry. This
sheds light on emergent symmetries in a number of 4d N = 1 SCFTs
(including the ‘E7 surprise’ theory) as well as leads to new predictions for a
large number of 4-dimensional exceptional dualities and symmetries.

1. Introduction

In recent decades we have learnt a lot about the dynamics of su-
persymmetric quantum field theories in four dimensions. These
models often exhibit properties which are hard to explain from
first principles. One example of such a property is duality, either
exact equivalence of different CFTs or, more ubiquitously, differ-
ent UV models flowing to the same IR SCFT. Another, less well
studied phenomenon, is appearance of symmetries at IR fixed
points that are notmanifest in theUV description. An interesting
question about such phenomena is whether there is any organiz-
ing principle responsible for their existence and whether there is
a systematic way to discover examples of models possessing such
surprising properties.
Recently, mainly due to proliferation of exact non-perturbative

techniques,[1] on the one hand we are able to relatively easily pro-
duce, or more precisely conjecture, many examples of surpris-
ing properties of QFTs. On the other hand, many such proper-
ties can be fit in a geometric construction realizing the theories
of interest as dimensional reduction of some six dimensional su-
persymmetric model on a two dimensional surface. Such geo-
metric construction gives precisely the desired organizing prin-
ciple both giving arguments to why one should have models
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exhibiting dualities and certain sym-
metries already observed, and more
importantly predicting existence of many
new examples.

The geometric constructions of SCFTs
in four dimensions start from a choice
of a six dimensional (1, 0) supersymmet-
ric model. A vast variety of such mod-
els is believed to exist (see, e.g. [2–4])
and a classification of them has been
proposed in [5–7]. Once we compactify
these theories on a Riemann surface, it
is difficult to ascertain detailed proper-
ties of the resulting theories. In such

compactifications for a general choice of the setup one can de-
rive predictions for existence of four dimensionalmodels exhibit-
ing certain duality and symmetry properties.[8] However, for spe-
cial cases one can say more. An important case of 6d supersym-
metric theories which has been widely studied[9–11] and one can
say much more about is the (2, 0) supersymmetric theory liv-
ing on a stack of M5 branes compactified on a Riemann surface.
Here many of the compactifications give rise to CFTs in four di-
mensions with extended supersymmetry, a fact which allows to
performmore computations (Seiberg-Witten curves, S4 partition
functions) testing a conjectured map between compactifications
and four dimensional constructions. Another example studied
recently, now with N = 1 supersymmetry, is that of M5 branes
probing A-type singularity[12] (see also [13–15]). Here beyond spe-
cial cases (for example two M5 branes probing Z2 singularity[8,12]

on general surface, or N M5 branes on a torus with fluxes for
global symmetry[12,16])1 an explicit map between predicted mod-
els and 4d field theoretic constructions is hard to derive. When a
convenient 4d field theory is identified for a 6d theory on a par-
ticular Riemann surface, it might lead to a stepping stone which
can be used to unravel the whole map for an arbitrary Riemann
surface.
In this paper we study in detail yet another example of such

geometric constructions. In particular we study Riemann surface
compactifications of perhaps the most ‘minimal’ 6d (1,0) theory:
the 6d theory of a small E8 instanton.[23] This model has a va-
riety of other string/M/F-theoretic constructions. It can also be
viewed as the theory on an M5 brane probing the Horava-Witten
E8-wall,[24,25] as the theory obtained by blowing up a point in the
C
2 base of F-theory,[26,27] or as the theory on an M5 brane prob-

ing a D4 singularity. This 6d theory is often referred to as the
E-string model as the corresponding tensionless string enjoys E8

1 One can also understand compactifications of more general (1, 0) the-
ories on a torus with no fluxes, which have extended supersymmetry,
by relating them to the better studied compactifications of the (2, 0)
theory.[17–22]
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symmetry.[28] One can also consider higher rank E-string theo-
ries, corresponding to having more than one M5 brane probing
the E8-wall. We will construct 4d SCFTs corresponding to com-
pactifications of the rank one E-string model on a general Rie-
mann surface with general values of the fluxes and holonomies
for the global symmetry in six dimensions. As we will discuss,
the resulting four dimensional models for certain choices of
compactification parameters, should exhibit exceptional symme-
try (E8, E7 ×U(1), E6 × SU(2)×U(1), and so on). A stepping
stone for our derivation of the map between four and six dimen-
sions will be a particular case of a four dimensional model for
which it is believed that exceptional enhancement of symmetry
happens,[29] the E7 surprise model. Here the apparent SU(8) sym-
metry of the Lagrangian enhances to E7 at some point on the con-
formal manifold of the IR SCFT. In fact, we derive this field the-
ory using known facts about compactifications of E-string theory
on a circle (which leads to a description with SU(2) gauge theory
with 8 flavors[30]). In particular our construction demystifies the
E7-surprise. This single entry on themap will allow us to chart the
whole correspondence between six and four dimensions in this
case. In particular we will derive a large variety of quiver theo-
ries for which we conjecture the symmetry of the IR fixed points
is enhanced to various sub-groups of E8. We will also construct
models which have E8 itself as the symmetry group of the fixed
point.
The paper is organized as follows. In section two we discuss

the general predictions for four dimensional theories derived
from six dimensions starting from the E string model. We com-
pute the anomalies of the theories in four dimensions and the ex-
pected flavor symmetry. In section three we discuss the field the-
ories corresponding to compactifications on a torus with fluxes
preserving E7 ×U(1) symmetry. In particular we develop the ba-
sic entry, a sphere with two punctures, on the correspondence
map which will be utilized to bootstrap it in what follows. In sec-
tion four we consider a five dimensional perspective from which
this correspondence can be deduced. Moreover we use the 5d
picture to derive the resulting 4d theory for a sphere with two
punctures and arbitrary fluxes. In section five we present sev-
eral checks of this prediction deriving theories corresponding
to toroidal compactification and also sphere with two punctures
with flux breaking the symmetry of the four dimensional models
to subgroups of E8. In section six we study the procedure of clos-
ing punctures and in particular discuss spheres with one punc-
ture. In section seven we propose a model corresponding to a
sphere with three maximal punctures. From this theory we can
then construct models corresponding to general Riemann sur-
faces with punctures and general values of the flux. In section
eight we summarize the results. Several appendices complement
the text with additional details and computations. In particular,
Appendix B includes comments on generalizations of our results
to higher rank E-string theories.

2. E-String

For a general 6d (1, 0) theory compactified on a Riemann surface
we would expect to obtain an N = 1 supersymmetric theory in
4d. To preserve the supersymmetry we embed the U(1) holon-
omy of the surface in the SU(2) R-symmetry of the 6d theory. We

can also turn on supersymmetry preserving flat connections for
the flavor symmetries of the 6d theory, as well as turn on fluxes
in an abelian subgroup of the flavor group.[8] One can then pre-
dict the symmetries, the dimension of the conformal manifold,[8]

the number of and charges of certain relevant deformations,[31]

as well as the ’t Hooft anomalies (from which, assuming there
are no accidental abelian symmetries in four dimensions, a and
c central charges can be computed) for the resulting 4d theories.
In this section we shall discuss the compactification of the rank
Q E-string theory to 4d with fluxes under its flavor symmetry.
The E-string theory has flavor symmetry E8 for rank one and
SU(2)× E8 for rank higher than one. In what follows we will
concentrate mostly on the rank one case, however the six dimen-
sional analysis can be easily done for the general case and we will
keep the rank as a parameter here.
We start from the computation of the anomalies of the 4d

models resulting from the compactification of the mother 6d
theory. For that we require the anomaly polynomial of the rank
Q E-string theory. This was computed in [32,33], who found it
to be,

IE−s tr ing

= Q(4Q2 + 6Q + 3)
24

C2
2 (R)+

(Q − 1)(4Q2 − 2Q + 1)
24

C2
2 (L )

− Q(Q2 − 1)
3

C2(R)C2(L )+ (Q − 1)(6Q + 1)
48

C2(L )p1(T )

− Q(6Q + 5)
48

C2(R)p1(T )+ Q(Q − 1)
120

C2(L )C2(E8)248

− Q(Q + 1)
120

C2(R)C2(E8)248 + Q
240

p1(T )C2(E8)248

+ Q
7200

C2
2 (E8)248 + (30Q − 1)

7p1(T )− 4p2(T )
5760

. (2.1)

We use the notation C2(R),C2(L ) for the second Chern classes in
the fundamental representation of the SU(2)R and SU(2)L sym-
metries, respectively. Here SU(2)R denotes the R-symmetry and
SU(2)L denotes the global symmetry of the higher rank E-string
theory. We also employ the notationC2(G)R for the second Chern
class of the global symmetry G, evaluated in the representation
R, and p1(T ), p2(T ) for the first and second Pontryagin classes
respectively.
Next we consider compactifying the theory on a torus with

fluxes under U(1) subgroups of E8. We shall first consider the
case of a singleU(1) and then remark about more general cases.

2.1. Some Properties of E 8

There are eight convenient generators ofU(1)’s inside E8. These
are just given by the Cartan subalgebra of E8. To each U(1) we
can associate a node in the Dynkin diagram of E8. Then for each
node we get a different embedding of aU(1) inside E8 where the
commutant of the U(1) in E8 is given by the Dynkin diagram
one is left with after removing that node. The Dynkin diagram of
E8, in a standard numbering, is given in Figure 1. In Table 2.2
we have provided the commutant of the U(1) inside E8 for each
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Figure 1. The Dynkin diagram of E8.

node, as well as data that is useful when performing calculation of
the anomaly. The branching rules for the adjoint of E8 are given
in Appendix A for all of the eight choices. These then also serve to
define the normalizations we are using for the variousU(1)’s.2

Node Associated
Number representation Commutant in E8 ξ

8 248 U(1)× E7 1
1 3875 U(1)× SO(14) 2
7 30380 U(1)× SU(2)× E6 3
2 147250 U(1)× SU(8) 4
6 2450240 U(1)× SU(3)× SO(10) 6
3 6696000 U(1)× SU(2)× SU(7) 7
5 146325270 U(1)× SU(4)× SU(5) 10
4 6899079264 U(1)× SU(2)× SU(3)× SU(5) 15

(2.2)

Specifically, we shall need to decompose the second Chern
class of E8 into the second Chern classes of the commutant and
the first Chern class of the U(1). In this case we find that,

C2(E8) = −2ξC2
1 (U(1))+

∑
j

C2(G j ). (2.3)

Here C1(U(1)) is the first Chern class of theU(1), normalized so
that the minimal charge is 1, and ξ is a U(1) dependent integer
which values for the various U(1)’s are given in Table (2.2). The
sum j is over all simple groups that are commutants of theU(1)
in E8. Here we adopted a representation independent normaliza-
tion of the second Chern class defined as:C2(G)R = T (G)RC2(G),
where T (G)R is the Dynkin index of the representation.3

The generalization for fluxes in say nU(1)’s is straightforward.
The decomposition can now be written as,

C2(E8) = −2
n∑

i, j=1
�i j C1(U(1)i )C1(U(1) j )+

∑
j

C2(G j ), (2.4)

where � is an n × n real symmetric matrix. Thus there is a ba-
sis in which the matrix � is diagonal. In this diagonal basis the

2 In this paper we will, unless otherwise stated, be cavalier with global
properties of the groups.

3 For SU(N) andUSp(2N) groups, the Dynkin index of the fundamental
representation is 1

2 , for SO(N) groups it is 1, and for E6, E7 and E8 it
is 3, 6 and 30 respectively.

decomposition becomes:

C2(E8) = −2
n∑

i=1
ξiC2

1 (U(1)i )+
∑
j

C2(G j ), (2.5)

where ξi are the ones given in Table (2.2) for each U(1).4

Using the group theory information discussed here we can
next compute the anomalies of the resulting 4d theory. We shall
first deal with the case of flux in a single U(1), and after that go
on to discuss more general cases.

2.2. Anomalies of the E-String Theory with Flux in a Single U (1)

We can consider compactifying the 6d theory on a Riemann sur-
face � with flux under a U(1), that is

∫
�
C1(U(1)) = −z where

z is an integer. First let us concentrate on the case where �

is a torus. As the torus is flat we do not need to twist to pre-
serve SUSY. However, SUSY is still broken down to N = 1
in 4d by the flux. The 4d theory inherits a natural U(1)R R-
symmetry from the Cartan of the 6d SU(2)R though this in gen-
eral is not the superconformal R-symmetry. Under the embed-
ding of U(1)R ⊂ SU(2)R, the characteristic classes decompose
as, C2(R) = −C2

1 (U(1)R).
Next we need to decompose E8 to the subgroup preserved by

the flux as is done in (2.3). Finally we set: C1(U(1)) = −zt +
εC1(U(1)R)+ C1(U(1)F ). The first term is the flux on the Rie-
mann surface, where we use t for a unit flux two form on �,
that is

∫
�
t = 1. The second term takes into account possiblemix-

ing of the 4d global U(1) with the superconformal R-symmetry,
where ε is a parameter to be determined via a-maximization.[34]

For a-maximization one has to be careful that accidental U(1)
symmetries do not appear in the IR. Finally, the third term is the
4d curvature of theU(1). Next, we plug these decompositions into
(2.1) and integrate over the Riemann surface. This yields the 4d
anomaly polynomial six – form. From this we can evaluate a and
determine ε. We find that,

ε = s ign(z)

√
3Q + 5
18ξ

(2.6)

Inserting this into the 4d anomaly polynomial we find,

a =
√
2ξQ(3Q + 5)

3
2 |z|

16
, c = Q

√
2ξ (3Q + 5)(3Q + 7)|z|

16
,

(2.7)

Tr (U(1)F ) = −12ξQz, Tr (U(1)3F ) = −12ξ 2Qz, (2.8)

Tr (U(1)RU(1)2F ) = −(2ξ ) 32 Q
√
3Q + 5|z|,

Tr (U(1)FU(1)2R) = −4ξQz
3

(2.9)

4 For example consider the n = 2 cases whose branching rules are given
in Appendix A. For all three cases appearing appearing in Appendix A
the basis used is diagonal and we can immediately write the decompo-
sition.
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Tr (U(1)RG2) = −Q
√

ξ (3Q + 5)|z|
3
√
2

,

Tr (U(1)FG2) = −Qξz, (2.10)

Tr (U(1)RSU(2)2L ) = −Q(Q − 1)
√
2ξ (3Q + 5)|z|
12

,

Tr (U(1)F SU(2)2L ) = −1
2
Q(Q − 1)ξz, (2.11)

We can package the anomalies in a trial a and c function. De-
fine R = R′ − s

2 F − h T where T is the Cartan of SU(2) and F
is the U(1) generator. The generator R′ is the six dimensional
R symmetry before we extremize the trial a. The trial conformal
anomalies for rank Q E-string on torus with flux z for singleU(1)
are then,

a = 9
128

zξ s Q
(
6s 2ξ + 3h2(Q − 1)− 4(3Q + 5)

)
,

c = 3
128

ξzs Q
(
18s 2ξ + 9h2(Q − 1)− 4(9Q + 19)

)
. (2.12)

2.3. Symmetry and Flux Quantization

We have chosen to normalize the U(1)’s so that the minimal
charge is 1. This implies that the flux is quantized so as to be
an integer. The global symmetry in 4d is then the commutant of
the flux inside E8. However, as detailed in Appendix C, fractional
fluxes may still be consistent if they are accompanied by flux in
the center of the non-abelian symmetry.5 The possible spectrum
can be inferred by studying the branching rules in Appendix A,
and looking for combined transformations that act trivially. We
won’t give here a full classification rather mention a few cases
that will play a role later.
Consider the breaking of E8 → U(1)× E7. In this case we can

support also half-integer fluxes. Under this choice of fluxes only
the 56±1 will transform non-trivially, which can be canceled by
turning on a flux in the center of E7. However, this will break E7

to a smaller group. The maximal subgroup one can preserve is
F4. It should be noted though that the commutant depends on
the choice of elements used to implement this flux, and in par-
ticular different choices can lead to different symmetries though
the rank remains invariant.
As a more complicated example, consider the breaking of

E8 → U(1)× SO(14). In this case we can also support fluxes of
the form n

4 where n is an integer. This follows as SO(14) has a
Z4 center which we can turn on flux in to compensate for the in-
complete transformation generated by the U(1) flux. In the case
of half-integer flux, the element in the center that is used is ex-
actly the one corresponding to a 2π rotation in the SO group. In
this case the maximal commutant group is SO(11).

5 Specifically, the flux is generated by two holonomies that do not com-
mute up to an element of the center. As such, it breaks the global sym-
metry to a smaller group. It can also be regarded as a nonzero Stiefel-
Whitney class for the global symmetry bundle preserved by the U(1)
fluxes. Again we refer the reader to Appendix C for details.

As a final example consider the case of E8 → U(1)× SU(2)×
E6. Now we can incorporate fluxes quantized as n

6 where n is an
integer. In this we use the Z2 center of SU(2) and the Z3 center
of E6. In the specific case of half-integer flux, we rely only on flux
in the Z2 center of the SU(2). This breaks completely the SU(2).

2.4. Anomalies of the E-String Theory with Fluxes in More Than
One U (1)

It is straightforward to generalize to flux in more U(1)’s.
At the level of the anomaly polynomial this implies we take∫

�
C1(U(1)i ) = −zi , where z is a vector of fluxes. This means

that we use the decomposition (2.4), and take C1(U(1)i ) =
−zi t + εiC1(U(1)R)+ C1(U(1)Fi ), but otherwise proceed as be-
fore. Therefore, after integrating the 6d anomaly polynomial we
get the 4d one.
The 4d anomaly polynomial has increasingly more terms, the

more U(1)’s we turn on flux in. Similarly, to get a and c we will
need to determine all ε’s by performing a-maximization.
As an example let’s consider the case of two U(1)’s. We shall

assume that these can be written in a diagonal basis. In this case
we can show that,

εi = zi

√
3Q + 5

18(ξ1z21 + ξ2z22)
(2.13)

From this we can evaluate various anomalies. For instance for a
and c we find,

a =
√
2(ξ1z21 + ξ2z22)Q(3Q + 5)

3
2

16

c = Q
√
2(ξ1z21 + ξ2z22)(3Q + 5)(3Q + 7)

16
. (2.14)

Finally we can deal with the case of arbitrary flux. Assuming again
that we are using a diagonal basis, then it is possible to show that
we now get,

a =
√
2(

∑8
i=1 ξi z2i )Q(3Q + 5)

3
2

16
,

c =
Q

√
2(

∑8
i=1 ξi z2i )(3Q + 5)(3Q + 7)

16
. (2.15)

This leaves the issue of finding possible diagonal bases. Recall
that abelian fluxes can be identified with points in the root lattice
so the problem can be reduced to finding a diagonal basis for
the root lattice. For this it is convenient to use a basis of roots
given by the SO(16) ⊂ E8. The roots can be represented by their
charges under the eight Cartans. As the adjoint of E8 decomposes
as: 248 → 120+ 128, the roots are given by,

(±2, ±2, 0, 0, 0, 0, 0, 0)+ permutations,

(±1, ±1, ±1, ±1, ±1, ±1, ±1, ±1)
with even number of minus signs, (2.16)

Fortschr. Phys. 2018, 66, 1700074 C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1700074 (4 of 35)

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

where the first term gives the 112 roots in 120, and the second
term the 128. Here we have normalized the U(1)’s so that the
minimal charge is 1 as we have used in this article.
A convenient choice of basis then is the SO(16) one:

(4, 0, 0, 0, 0, 0, 0, 0)+ permutations. This is a diagonal basis
where each U(1) preserves U(1)× SO(14) ⊂ E8. Thus, in this
basis ξi = 2. One can choose other bases. For instance the ba-
sic roots each preserve a U(1)× E7 ⊂ E8 and a diagonal ba-
sis can be made just from them. For instance the choice:
(2, 2, 0, 0, 0, 0, 0, 0)+ (2, −2, 0, 0, 0, 0, 0, 0)+ Z4 cyclic permuta-
tions, is a diagonal basis with ξi = 1. Finally in Table (2.17) we
have written several vector choices for each basic subgroup.

Node Associated vectors Commutant in E8 ‖vector‖2
8 (2, 2, 0, 0, 0, 0, 0, 0), U(1)× E7 8

(1, 1, 1, 1, 1, 1, 1, 1)
1 (4, 0, 0, 0, 0, 0, 0, 0), U(1)× SO(14) 16

(2, 2, 2, 2, 0, 0, 0, 0)
7 (2, 2, 2, 2, 2, 2, 0, 0), U(1)× SU(2)× E6 24

(3, 3, 1, 1, 1, 1, 1, 1)
2 (4, 2, 2, 2, 2, 0, 0, 0), U(1)× SU(8) 32

(5, 1, 1, 1, 1, 1, 1, 1)
6 (4, 4, 2, 2, 2, 2, 0, 0), U(1)× SU(3)× SO(10) 48

(4, 4, 4, 0, 0, 0, 0, 0)
3 (6, 2, 2, 2, 2, 2, 0, 0) U(1)× SU(2)× SU(7) 56
5 (4, 4, 4, 4, 4, 0, 0, 0), U(1)× SU(4)× SU(5) 80

(5, 5, 5, 1, 1, 1, 1, 1)
4 (9, 3, 3, 3, 3, 1, 1, 1) U(1)× SU(2)× 120

SU(3)× SU(5)

(2.17)

Basic vectors on the root lattice preserving a given subgroup inside E8.
Here we show the minimal choice where others can be generated by
multiplying the vector. Also each choice has several possibilities that
are related by Weyl transformations, and we have only given some of
them. We have also given the length of the vector, which is a Weyl
invariant.
While one can choose any basis to work with, when study-

ing the theories that appear in 4d a convenient basis presents
itself. This basis uses the U(1)× SU(8) subgroup embedded as:
U(1)× SU(8) ⊂ U(1)× E7 ⊂ E8. For this we can introduce the
flux vector (nt ; ni ), where nt is the flux under theU(1) and ni are
the fluxes under the SU(8), as such they obey

∑
i ni = 0. The nor-

malization of theU(1) is as in Appendix A, and ni are normalized
such that: 8 = ∑

i ai.
The flux vector as given is overcomplete. One can combine the

fluxes in nt and ni to form the flux vector ( fi ) where fi = 2ni + nt .
This leads to an SO(14) basis which is exactly the one we intro-
duced before. This is a convenient basis as the fluxes precisely
match with points in the root lattice of E8 in the SO(16) basis
we introduced, which can be used to infer the global symme-
try preserved by the flux. For example, the flux fi = 1 preserves
E7 while the one f1 = f2 = f3 = f4 = 1, f5 = f6 = f7 = f8 = 0
preserves SO(14), and likewise for other fluxes appearing in Ta-
ble (2.17).
Another convenient property of these bases is that they are di-

agonal. In terms of the (nt ; ni ) presentation then nt is an E7 pre-

servingU(1) so ξt = 1. One cannot give a flux to just one ni yet for
anomaly calculations one can associate with them the unphysical
ξni = 1

2 . Then in this basis we have:

∑
i

ξi z2i = n2t + 1
2

∑
i

n2i . (2.18)

The combined basis, ( fi ), is an SO(14) one, but we have
chosen to normalize it so that the SO(14) preserving roots are
(1, 0, 0, 0, 0, 0, 0, 0) instead of (4, 0, 0, 0, 0, 0, 0, 0). Thus, in this
basis we have:

∑
i

ξi z2i = 2
∑
i

(
fi
4

)2

= 1
8

∑
i

f 2i . (2.19)

2.5. Anomalies of the E-String Theory with Fluxes on a Closed
Riemann Surface

We consider the case of a generic closed Riemann surface of
genus g . This differs from the previous case as Riemann sur-
faces are generically curved and so supersymmetry is completely
broken. We can preserve supersymmetry by twisting the SO(2)
acting on the tangent space of the Riemann surface with the
Cartan of SU(2)R. At the level of the anomaly polynomial, this
changes the decomposition of C2(R): C2(R) = −C1(R)2 + 2(1−
g )tC1(R)+ O(t2). The rest proceed exactly as before. It is con-
venient in this case to normalize the flux with respect to the
genus. For that we define z̃ = z

2−2g .
The simplest case is the compactification with no flux for

which we find,

a = 75
16
(g − 1), c = 43

8
(g − 1). (2.20)

This only makes sense for g > 1. The case of g = 1 is known
to give the Minahan-Nemeschansky[35] E8 theory.[30,36] This case
has N = 2 supersymmetry, where the N = 2 U(1)R is an acci-
dental symmetry from the 6d view point. As a result we can not
compute the anomalies involving this symmetry. As for N = 2
superconformal theories all non-vanishing anomalies must in-
volve this symmetry,[37] we cannot determine them using this
method. In that light the result of (2.20) is consistent though un-
informative. Finally when g = 0 we do not expect a 4d supercon-
formal theory. It should be noted though that with sufficiently
high flux, even sphere compactifications can lead to interesting
4d models.[38]

For completeness we shall next write the anomalies for general
compactifications,

Tr (U(1)3R) = (g − 1)Q(4Q2 + 6Q + 3),

Tr (U(1)R) = −(g − 1)Q(6Q + 5), (2.21)

Tr (U(1)Fi ) = 24(g − 1)Qξi z̃i ,

Tr (U(1)3Fi ) = 24(g − 1)Qξ 2i z̃i , (2.22)
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Tr (U(1)RU(1)2Fi ) = −2Q(Q + 1)(g − 1)ξi ,

Tr (U(1)FiU(1)
2
R) = −4Q(Q + 1)(g − 1)ξi z̃i (2.23)

Tr (U(1)F j U(1)
2
Fi
) = 8Q(g − 1)ξiξ j z̃j ,

Tr (U(1)FkU(1)F j U(1)Fi ) = Tr (U(1)RU(1)F j U(1)Fi ) = 0, (2.24)

Tr (U(1)RSU(2)2L ) = −Q(Q2 − 1)(g − 1)
3

,

Tr (U(1)Fi SU(2)
2
L ) = Q(Q − 1)(g − 1)ξi z̃i , (2.25)

where here we use the 6d R-symmetry.

2.6. Anomalies of a Puncture

We are now interested in the anomalies of a generic Riemann
surface with genus g and s punctures. The anomalies without
punctures, as we discussed, can be obtained from the anomaly
polynomial of the E-string theory by integrating it on the Rie-
mann surface. This means that the anomalies of the genus g
Riemann surface are determined by the topology of the Riemann
surface including the U(1) fluxes as well as the anomalies of the
original 6d E-string theory. However, when we add a number of
punctures, the symmetries and the anomalies assigned to the
punctures are not fully captured by the topological data. These
properties are associated to boundary conditions of the E-string
theory around the punctures. It is difficult to study the boundary
conditions of the E-string theory directly in six-dimensions. In-
stead, we can use a circle reduction of the E-string theory for this
purpose.
We first elongate the geometry around a puncture as a thin

and long tube with a boundary. The puncture corresponds to the
boundary condition of the tube. The 4d theory of the deformed
Riemann surface remains the same as the 4d theory of the origi-
nal surface since the theory depends only on the topology of the
Riemann surface other than the puncture data. Now the appro-
priate theory living on the thin long tube is the 5d theory of the
E-string theory compactified on a small circle. The puncture data
of the 4d theory such as symmetries and anomalies are encoded
in the boundary condition of the 5d theory at the tip of the tube,
say x5 = 0 where the tube stretches along the x5 direction in
5d. This 5d theory is a well-known theory.[30] It is the N = 1
SU(2) gauge theory with 8 fundamental hypermultiplets, often
called 5d E-string theory. The classical gauge theory preserves
SO(16) global symmetry acting on the 8 fundamental hypers
and U(1) topological symmetry whose charge is carried by non-
perturbative instanton particles. It is expected that this 5d theory
at strong coupling uplifts to the 6d E-string theory.
The puncture preserves four supersymmetries, so it is related

to a boundary condition preserving four supersymmetries of the
5d N = 1 supersymmetry. There is a simple 1/2 BPS boundary
condition. We give Dirichlet boundary conditions to the SU(2)
vector multiplet of the 5d theory at the boundary. For the hyper-
multiplets, we first split them into two sets of eight chiral multi-
plets so as to be compatible with 4d boundary N = 1 supersym-
metry, and we choose Neumann boundary conditions for one set

Figure 2. Geometry near a puncture in Riemann surface (left) can be de-
formed as a long thin tube in the right. Boundary condition at the end of
the tube determines type of the puncture.

and Dirichlet boundary conditions for the other. This is the sim-
plest boundary condition preserving four supersymmetries. We
will refer to this boundary condition as ‘maximal boundary condi-
tion’ as it maximally preserves the symmetry of the E-string the-
ory with boundaries.
The E8 global symmetry of the 6d E-string theory will be bro-

ken toU(8) orU(1)× SU(8) global symmetry because of the split-
ting of the eight hypermultiplets. The 4d theory involving punc-
tures from this maximal boundary condition is expected to have
U(8) global symmetry or its subgroup depending on the bulk
topology of the Riemann surface and the fluxes and also other
punctures. This classical global symmetry sometimes enhances
to a bigger symmetry in special points in the marginal defor-
mations by quantum effects. The bulk SU(2) gauge symmetry
becomes an SU(2) global symmetry due to the Dirichlet bound-
ary condition of the vector multiplet, which lead to an additional
SU(2) global symmetry for each puncture.
We claim that the maximal boundary condition of the 5d

E-string theory gives rise to the punctures in the 4d theories in the
following sections. We can of course in principle try to construct
other 1/2 BPS boundary conditions by coupling some additional
4d N = 1 degrees of freedom to this simplest boundary condi-
tion or we may be able to find new 1/2 BPS boundary conditions
with same or different global symmetries. More punctures and
boundary conditions associated to 6d theories will be studied in
a separate paper.[39] We will focus on the maximal boundary con-
dition and associated punctures in this work and will not attempt
a classification of the punctures.
We can study many important properties of punctures by us-

ing the 5d boundary condition analysis. For example, we have al-
ready identified the global symmetries related to the puncture.
We will now compute the ’t Hooft anomalies assigned to the
puncture. The anomalies of punctures have two distinct contribu-
tions. One is the geometric contribution which we can compute
by integrating the 6d anomaly polynomial of the E-string theory
around the puncture with fluxes. Another contribution comes
from the 5d boundary conditions. The 5d fermions with Neu-
mann boundary condition generates anomaly inflows toward the
boundary and it induces non-trivial ’t Hooft anomalies for the
puncture. This can be interpreted as the anomaly inflows from
the effective Chern-Simons (CS) term in the 5d E-string theory in
the presence of the boundary where the effective CS term is in-
duced by the fermion loops with Neumann boundary condition.
The combination of the geometric contribution and the inflow
contribution of the 5d boundary condition determines the total
anomalies of the puncture.
The geometric contributions to the puncture anomalies from

the 6d anomaly polynomial depends on the Riemann surface
and fluxes. For the two punctured sphere, the full geometric
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anomalies including two puncture contributions are

Tr (U(1)Fi ) = −12ξi zi , Tr (U(1)3Fi ) = −12ξ 2i zi ,

Tr (U(1)FiU(1)
2
R) = 4ξi zi , Tr (U(1)F j U(1)

2
F j
) = −4ξiξ j zj .

(2.26)

Other anomalies are zero. Here theU(1)R is the Cartan of the 6d
SU(2)R R-symmetry before mixed with other abelian global sym-
metries. The geometric anomalies of a generic Riemann surface
including s punctures can be easily computed from the anoma-
lies with no punctures given in (2.21), (2.22), (2.23), (2.24), (2.25)
by replacing g → g + s/2.
Now let us compute the anomaly inflow arising from the 5d

boundary condition. First, the SU(2) vector multiplet is in the
Dirichlet boundary condition. This kills a chiral half of the gaug-
ino λ and leaves an anti-chiral gaugino at the boundary. Namely,
the anti-chiral gaugino, i.e. γ 5λ = −λ, satisfies Neumann bound-
ary condition. Note that the gauginos are in the adjoint repre-
sentation of SU(2) and they are subject to the 5d symplectic-
Majorana condition. Under this condition, this anti-chiral gaug-
ino satisfyingNeumann boundary conditionwithU(1)R R-charge
“+1” is identified with a chiral gaugino with U(1)R R-charge −1
which contributes to an anomaly inflow toward the 4d boundary.
Therefore the anomaly inflow from the vector multiplet in the
Dirichlet boundary condition is

Tr (U(1)3R) = −3
2
, Tr (U(1)R) = −3

2
,

Tr (U(1)RSU(2)2) = −1. (2.27)

We remark here that the anomaly inflow induced by an chiral
fermion coming from a 5d chiral fermion is half of the anomalies
from a 4d chiral fermion carrying the exactly same charge.[40–42]6

Regarding this fact, we have multiplied by a factor of 1
2 in the

above anomaly results.
Next, a singlet hypermultiplet in the maximal boundary condi-

tion leaves a chiral fermion of γ 5ψ = ψ . This chiral fermion is a
singlet under the SU(2)R symmetry. The flavor charges of the chi-
ral fermions depend on the choice of chiral half of the scalar fields
in the hypermultiplet. When a-th chiral scalar (of eight hyper-
multiplets) with theU(1)Fi charge qai satisfies Neumann bound-
ary condition, the anomaly inflow contributions coming from its
fermionic partner are

Tr (U(1)3Fi ) =
8∑

a=1
q 3ai , Tr (U(1)Fi ) =

8∑
i=1

qai ,

Tr (U(1)Fi SU(2)
2) = 1

4

8∑
a=1

qai . (2.28)

6 For example, a single 5d hypermultiplet in a segment with a small
length L � 1 becomes a 4d chiral multiplet including one chiral
fermion when it satisfies Neumann boundary condition at both ends.
The anomalies of the 4d chiral multiplet can be interpreted as the sum
of the 5d anomaly inflows toward two boundaries. This means that the
anomaly inflow at each 4d boundary is half of the anomalies of the 4d
chiral multiplet since two boundary contributions should be the same.

Figure 3. The basic theory. Circles represent gauge groups while squares
represent global symmetries. There is a cubic superpotential for the two
triangles. Also there are two singlets flipping the fields marked with an
X. There is a global U (1) whose charges are written using the fugacity
t. Also all fields have superconformal R-charge 2

3 . With six dimensional
R-symmetry the fields charged under SU (8) have R-charge one, bifunda-
mental of the gauge symmetry have R charge zero, and finally the flip fields
have R-charge two.

Therefore, the anomaly inflow contribution for a puncture is
given by the sum of (2.27) and (2.28).

3. Rank One E-String on a Torus: E 8→ E 7 × U (1)

We now construct the four dimensional field theories resulting
in compactification of rank one E-string on torus with flux pre-
serving E7 ×U(1) subgroup. We will present a more systematic
construction going through five dimensions in section four. Here
we will argue for the model obtained in such a compactification
directly in four dimensions and will be guided by anomaly and
symmetry considerations.
We expect the theory to have E7 ×U(1) symmetry, in particu-

lar all the protected states to fall in E7 representations. There is a
natural candidate to be related to such a model, the E7 surprise
theory of Dimofte and Gaiotto[29] (see [43,44] for precursor ob-
servations). This model is two copies of SU(2) SQCD with four
flavors with the bilinear gauge invariants of the copies coupled
through a quartic superpotential. The Lagrangian of this model
shows SU(8) symmetry, and by studying supersymmetric spec-
trum of the model one can argue that it is reasonable that some-
where on the conformal manifold of the IR SCFT the symmetry
enhances to (at least) E7. However, it is easy to check that the
anomalies of this theory do not match the anomalies predicted
from six dimensions for any simple choice of flux, punctures,
and genus. A small variation of this theory, such that the sur-
prise theory is a relevant deformation of it, has actually all the
needed properties. A conjecture for the theory with minimal flux
for theU(1) is depicted in Figure 3. It consists of two SU(2) gauge
nodes with two copies of bi-fundamental chiral fields and each
node has additional eight chiral fields. We have a superpoten-
tial for each triangle in the quiver and also we have two gauge
singlet fields flipping the gauge invariant mesons built from the
bifundamentals. As aside comment let us say that this theory,
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without the flip fields, is related to a Z2 orbifold of SU(2) N = 2
SYMwith four flavors, which also appears as a trinion for twoM5
branes probing Z2 singularity with flux breaking the SO(7) sym-
metry of that setup to SO(5)×U(1). We will actually derive this
model from first principles based on compactifictions of E-string
theory on a circle. This derivation will be postponed to the next
section.
We can compute the anomalies of the model. In particular the

superconformal R-charge is the free one. The a and c anomalies
are,

a = 2, c = 5
2
. (3.1)

These anomalies match precisely the ones predicted for rank one
E string with one unit of flux on a torus. At this stage the flux can
be either positive or negative, yet, for reasons of concreteness and
convenience, we shall associate a flux of −1 with this theory. All
the other anomalies can be also computed and match six dimen-
sions, whereU(1)t is related to the 6d one by a factor of− 1

2 . Thus,
under the 6d U(1) symmetry the fundamentals are charged mi-
nus half, the bifundamentals one, and the flippers minus two.
Then for example,

TrF R2 = 32
(
2
3

− 1
)2 (

−1
2

)
+ 8

(
2
3

− 1
)2

(1)

+ 2
(
2
3

− 1
)2

(−2) = −4
3
,

TrRF 2 = 32
(
2
3

− 1
) (

−1
2

)2

+ 8
(
2
3

− 1
)
(1)2

+ 2
(
2
3

− 1
)
(−2)2 = −8,

TrF 3 = 32
(

−1
2

)3

+ 8(1)3 + 2 (−2)3 = −12,

TrF = 32
(

−1
2

)
+ 8(1)+ 2 (−2)3 = −12. (3.2)

This theory has manifestly SU(8)×U(1) flavor symmetry. One
can compute the dimension of the conformal manifold to be
six[8] and show that the symmetry at a general locus is bro-
ken to U(1)8. The SU(8) symmetry, in fact SU(8)× SU(8)×
SU(2)×U(1), is recovered at zero coupling. Interestingly, com-
puting the index one can find that the protected spectrum or-
ganizes in representations of E7 ×U(1) with the SU(8)×U(1)
being the maximal subgroup. For example, one has fundamen-
tal fields in 8 and 8̄ for the two gauge nodes. The gauge invari-
ants then are in 28 and 28 which combine to form 56 of E7.
The complete index can be formed in E7 characters where it
reads7

7 In case the reader is not familiar with suprsymmetric index[45,46]

nomenclature we recommend[47] for beautiful exposition and[48] for a
review, and we will use the notations of the latter.

IE7 = 1+ (pq )
2
3

(
3
t4

+ t2χ [56]
)

− 2pq

+ (pq )
2
3 (p + q )

(
2
t4

+ t2χ [56]
)

+ (pq )
4
3

(
6
t8

+ 1
t2

χ [56]+ t4(χ [1463]− χ [133]− 1)
)

+ · · ·

(3.3)

Here we have ignored the singlets as these are just free
fields.
So we have seen that many things are consistent with the 6d

interpretation. It is thus natural to conjecture that there is a lo-
cus on the conformal manifold where the symmetry enhances
to E7 ×U(1) or larger. There is one problem with this conjec-
ture. The index at order pq is given by−2. At this order the index
captures the number of marginal deformations minus the con-
served currents.[49] Assuming that somewhere the symmetry en-
hances to E7 we thus should write 133− 133− 1− 1 = −2. The
−133− 1 is the conserved current of E7 × u(1). The additional
−1 is to be interpreted as a conserved current of an accidental
U(1) at that point, and 133 is the marginal deformation. How-
ever, this implies that the dimension of the conformal manifold
is the number of independent invariants[50] of the adjoint rep-
resentation of E7 which is seven. This does not agree with the
computation at the free point. We thus deduce that although the
index (and one can check other partition functions) are consis-
tent with SU(8) symmetry enhancing to E7, there is no point on
the conformalmanifold where this actually happens. From six di-
mensional point of view if the theory is to be associated with the
compactification of E-string preserving E7 ×U(1) symmetry, this
implies that there is a holonomy breaking the E7 which cannot
be turned to zero. Note that the naive dimension of the confor-
mal manifold is nine, one for complex structure and eight for
holonomies, however as it is usual for the torus with no punc-
tures and low value of flux, the actual conformal manifold is
different.
The E7 symmetry can be obtained if we give a vacuum expec-

tation value to flipper fields which will provide a mass to the bi-
fundamental chirals. One obtains the E7 surprise of [29]. Such
a vacuum expectation value deformation breaks the U(1) sym-
metry and might have the effect of switching off the holonomies
breaking E7. Although we do not have a point with E7 symmetry
for themodel discussed here, we have seen that the assertion that
this theory corresponds to E7 compactifications is consistent with
numerous non trivial computations. In fact, given the derivation
we present for this theory in the next section, this demystifies the
E7 surprise.
As we have mentioned the flux here is the one breaking

E8 to U(1)× E7. We identify this U(1) with the U(1)t we in-
troduced previously, and associate with this theory the flux
(−1; 0, 0, 0, 0, 0, 0, 0, 0), where we note that z = 1 correspond to
a flux of −1 on the torus. In terms of the complete basis the flux
associated is: (−1, −1, −1, −1, −1, −1, −1, −1).
This construction has a generalization. Consider the quiver di-

agram of Figure 4. This is a triangulation of a circle with 2z tri-
angles (with z = 2 for Figure 4(a)). We again add extra singlet
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Figure 4. (a) Theory with two units of flux. (b) Theory with half a unit of
flux. Here the SU (8) is broken to SO(8) by the superpotential. Note that
the line from the SU (2) to itself stands for an adjoint plus a singlet.

fields.8 The anomalies are given by,

a = 2z, c = 5
2
z. (3.4)

Whichmatches the six dimensions with flux∓z, and here we will
make the choice to associate for concreteness this model with
−z. The supersymmetric states again fall in representations of
E7 ×U(1).
Note that with odd number of triangles the group is broken

from SU(8) to SO(8). In particular one triangle is just theN = 2
case with a flip. The flux here is− 1

2 . It will be interesting to study
some aspects of these theories. Let’s first consider the N = 2
(with the flip field) case shown in Figure 4(b). Due to the frac-
tional flux the compactification involves also a center flux break-
ing E7 which explains the breaking of the SU(8) in field the-
ory. The remaining global symmetry depends on the choice of
holonomies used to generate the flux. Arbitrary holonomies are
expected to break E7 down to U(1)4 which for special choices
will be enhanced to various groups, the largest of which being
F4. Turning on holonomies on a Riemann surface are usually
mapped to marginal operators in the 4d theory. Thus we expect
there to be a conformal manifold on special points of which the
symmetry enhances to various groups including F4.
We can try and test this using the superconformal index. Eval-

uating the index we find:

IE7 = 1+ (pq )
2
3

(
1
t4

+ t2χ [28]
)

− χ [28]pq

− (pq )
1
3 (p + q )
t2

+ · · · , (3.5)

where we have again ignored the singlet fields. It was noted that
this index in fact forms characters of F4.[51] This works as one
can reinterpret the 28 of SO(8) as the 26+ 1+ 1 of F4. However,
there are several problems with this. First the 28 contribute neg-
atively to the pq order. This fits with the conserved current of
SO(8), but not with an F4 interpretation as the 26 is not the ad-
joint of F4. Another issue is that the only marginal operator here

8 We comment again that up to the flip fields this model is related to Z2z
orbifold of SU(2) N = 2 SYM with four flavors.

Figure 5. On the left we have a drawing of the conformal manifold of the
model with integer flux. We haveU (1)8 symmetry on a general point of the
conformal manifold. The symmetry enhances to SU (8) × U (1) on a line
passing through free point and we conjecture that there is another line
on which the symmetry is E7 × U (1) passing through strong coupling.
For half integer flux we have a line with SO(8) × U (1) symmetry passing
through the free point and U (1)5 symmetry at a general point. We conjec-
ture that there exist additional lines on which symmetry enhances with the
maximal enhancement being F4 × U (1).

is the SU(2) gauge coupling which does not break SO(8). There-
fore, this case bares similarities to the case of minimal integer
flux. Particularly, we have some expectations for symmetry en-
hancement on the conformal manifold. These expectations are
supported by the index forming characters of the desired sym-
metry. However, the enhanced symmetry point does not exist. In
both cases we note that the conformal manifold is smaller than
predicted from6d . This can be explained by postulating that there
is some holonomy in these cases that we cannot turn off. This
then may also explain why certain symmetries are not realized in
4d despite the 6d expectations.
Finally we remark a bit on the general case. Again we can for-

mulate the same expectations where for integer z we expect a
point with E7 symmetry while z half integer an F4 point is ex-
pected. We can again test this by evaluating the superconformal
index. Ignoring the singlets, we find:

IE7 = 1+ (pq )
2
3

(
2z
t4

+ zt2(χ [28]+ χ [2̄8])
)

+ · · · , (3.6)

where we note that the pq order vanishes.When z < 2 then there
are additional terms owing to the existence of extra marginal op-
erators or symmetries at the free point.
We now note several observations regarding the index. For z

integer it forms characters of E7, at least to the order we evaluated
it. Assuming there is a point with E7 global symmetry, we expect
there to be an 8 dimensional conformal manifold on a generic
point of which the symmetry is broken toU(1)8. Now there is no
contradiction with the free point.
For z half integer the index forms characters of SO(8), but

these can be reinterpreted as characters of F4, USp(8) and a va-
riety of other symmetries. As the pq order vanishes, there is no
contradiction with interpreting them as global symmetries. As-
suming such points exist, we expect there to be a 5 dimensional
conformal manifold on a generic point of which the symmetry is
broken toU(1)5. We see no contradiction with this from the free
point. This structure is consistent with what we expect from 6d .
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Figure 6. Sphere with two maximal punctures and half a unit of flux. The
six dimensional R-charge of the fields MA and MB is one, of bifundamen-
tals is zero, and the flip fields have R-charge two.

It is illuminating to also consider the index including the sin-
glets:

IE7 = 1+ 2zt4(pq )
1
3 + (pq )

2
3 (z(2z+ 1)t8 + zt2(χ [28]+ χ [2̄8]))

+ 2zt4(pq )
1
3 (p + q )

+ pq
(
2
3
t12z(z+ 1)(2z+ 1)+ 2z2t6(χ [28]+ χ [2̄8]))

)

+ · · · , (3.7)

where we again assume z ≥ 2. The interesting thing here is that
we can identify some of the contributions as coming from the 6d
conserved current multiplet of the E8 global symmetry. Particu-
larly, the contributions 2zt4(pq )

1
3 and zt2(χ [28]+ χ [2̄8]) have the

same R-charge as marginal operators under the 6d R-symmetry.
Furthermore the representations they carry exactly match those
required to complete E7 to E8 (see the branching rule in
Appendix A).
Another interesting thing is that the number of such opera-

tors is exactly as expected from the reasoning of [31] (see Ap-
pendix E for brief summary). The marginal operators expected
from holonomies also work as we expect, g − 1 = 0 ones in the
adjoint of E7 ×U(1). This is especially interesting as such sim-
ple reasonings are known to be unreliable for the torus. We also
expect one more marginal deformation related to the complex
structure moduli of the torus, which is absent. Absence of such
exactly marginal deformation appears already in the case with no
flux, that is the MN E8 theory.

3.1. Sphere with Two Punctures and Gaugings

The theories corresponding to the torus can be constructed in
a rather natural way by gluing together theories we would cor-
respond to a sphere with two maximal punctures, which have
SU(2) symmetry in our case, and flux value of − 1

2 . The field
theory is drawn in Figure 6. This is a Wess-Zumino model of
a collection of chiral fields. In terms of the flux basis it is associ-
ated with (− 1

2 ; 0, 0, 0, 0, 0, 0, 0, 0) in the overcomplete basis and
(− 1

2 ,− 1
2 , − 1

2 , − 1
2 ,− 1

2 , − 1
2 , − 1

2 ,− 1
2 ) in the complete basis.

Figure 7. Sphere with two punctures and one unit of flux.

Note that each SU(2) flavor symmetry, that we associate to a
puncture, has an operator in the fundamental of SU(2) and 8 or
8̄ of the SU(8). We denote these operators, which are fields in this
theory, by M. We think of the punctures as having a color label
depending on the embedding of SU(8) in E8. Here we have fixed
E7 in E8 and have two choices, depending onwhat representation
of SU(8) M is in, and we denote the choices by plus and minus.
When we glue punctures of color + we introduce a bifundamen-
tal field of SU(2)× SU(8) in 8̄, call it �, and couple it through
the superpotentialW = MA� − MB�. We then gauge the SU(2)
symmetry. The− color is glued in a similarmanner. Note that the
chiral fields also have U(1) charge, with M charged one and the
bifundamentals of two SU(2) groups minus two. Combining two
theories we can obtain a sphere with two maximal punctures of
same color and one unit of flux, and we depict it in Figure 7. We
can next glue two maximal punctures together to get our torus
theory.
The anomalies of the Wess-Zumino model discussed in this

section match (see Eq. (4.13) in the next section) the anomalies
computed from six dimensions for theory with half a unit of flux
on a sphere with two punctures. In particular,

Tr R = 4(−1)+ (2− 1) = −3,
Tr R3 = 4(−1)3 + (2− 1)3 = −3,

TrU(1)R2 = 4(1)(−1)2 + (−2)(2− 1)2 = 2,

TrU(1) = 16× 2×
(

−1
2

)
+ 4(1)+ (−2) = −14,

TrU(1)3 = 16× 2×
(

−1
2

)3

+ 4(1)3 + (−2)3 = −8, (3.8)

where the U(1) is normalized such that the bifundamental has
charge 1.
We also have an analogue of S-gluing of [8,12]. We note first

that if we conjugate the representations under all the symme-
tries we will get a theory which we will associate to a compacti-
fication with opposite values of the fluxes. In particular we will
assign an additional label, call this sign in analogy to [12], to
punctures depending on the charge of theM operators under the
U(1). Consider gluing together two theories along punctures of
opposite signs. As when we change the sign we conjugate all rep-
resentations, the gluing is obtained without additional fields by
gauging SU(2) and adding the supepotentialW = MAMB . As the
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Figure 8. S gluing of two punctures. The final theory is sphere with half
unit of flux less than the original one and two punctures of opposite sign.
Recall that the sign of puncture can be changed by flipping the “moment
map” operator charged under it. In this case this operator is field M and
thus it becomes massive.

operators M here are fields the superpotential gives them mass
and they disappear in the IR. The gauge group is then SU(2) with
four chirals. In particular the dynamics in the IR identifies the fla-
vor group with the gauge group connected to the group we gauge
now, that is Higgsing it due to the deformed quantum moduli
space. We then obtain a theory with half a unit less flux and with
maximal puncture with opposite sign. See Figure 8.

4. Five Dimensions, Domain Walls, and Tube
Models

In this section, we will derive our models of two punctured
spheres (or tubes) from the 5d E-string theory and domain walls
in it. We will first review boundary conditions and the duality do-
main walls in 5d gauge theories studied in [42]. It turns out that
the duality domain wall induces nonzero flux for a U(1) global
symmetry associated to the duality in the 5d theory. The domain
wall studied in [42] connects two different gauge theories that are
dual to each other by a Weyl reflection in an SU(2) subgroup of
the 5d global symmetry, which flips the sign of the mass param-
eter of theU(1) ⊂ SU(2). This domain wall was called the duality
domain wall in [42] because in that context the SU(2) global sym-
metry was part of the emergent duality symmetry group. In our
context the U(1) will be part of the E8 global symmetry of the
E-string theory. We shall see that our tube models with fluxes in
this paper can be interpreted as particular concatenations of these
domain walls with suitable boundary conditions at both ends of
the 5d E-string theory on a segment.

4.1. Domain Walls and Fluxes

We start with reviewing the construction of the 5d duality domain
wall of [42]. Let us consider a domain wall inserted at x5 = 0 in a
5d SU(2)G gauge symmetry with some number of fundamental

hypermultiplets and a flavor symmetry which includes a U(1)F .
The domain wall splits the 5d theory into the left and the right
chambers. Each chamber now has its own SU(2)G gauge group.
We choose Neumann boundary condition for the SU(2)G gauge
multiplets on both sides of thewall, which preserves half of the 5d
N = 1 supersymmetries. This boundary condition introduces a
4d bi-fundamental chiral multiplet, say q , stuck at the 4d domain
wall.9 For the fundamental hypermultiplets, we choose the max-
imal boundary condition we discussed in section 2.6. Let us call
a chiral half of the hypermultiplets as Xi and another chiral half
as Yi in one chamber. Here i is a flavor index for the hypermulti-
plets. Then we will choose Neumann boundary condition for Xi

in the left chamber and also for Y ′
i in the right chamber. So Yi and

X ′
i are given Dirichlet boundary condition. The ‘duality’ domain

wall of [42] leads to the following 4d superpotential coupling at
the interface:

W|x5=0 = b detq +
∑
i

Y ′
i q Xi . (4.1)

Here we added an extra 4d chiral multiplet b which is neutral
under the bulk gauge symmetries. This singlet field b will be later
identified with the flipping fields in the 4d tube models.
This system has two anomaly freeU(1) global symmetries and

we can choose a basis for them such that the 4d fields b and q
transform only by one U(1), which we will call U(1)F . The fun-
damental chiral fields Xi and Y ′

i carry − 1
2 charge and the 4d

fields b and q carry −2 and +1 charges, respectively, under this
U(1)F symmetry. Furthermore, 5d bulk topological symmetries
of the instanton number current JI = 1

8π2 Tr (F ∧ F ) mix with
this symmetry. A neutral instanton with instanton number ‘+1’
in the left chamber carriesU(1)F charge−1+ Nf

8 and that in the

right chamber has the U(1)F charge 1− Nf
8 . We note that the

U(1)F symmetry does not mix with the topological symmetries
when Nf = 8.
This domain wall flips the sign of U(1)F charges and the sign

of the corresponding mass parameter.[42] The chiral fields X and
X ′ are both in the fundamental representation of SU(Nf ), but
they carry opposite U(1)F charges. This means that the U(1)F
charge on the left chamber flips its sign on the right chamber
after crossing the domain wall. Accordingly, the mass parame-
ter of U(1)F changes along the x5 coordinate from −m|x5→−∞ to
m|x5→+∞.
We now consider this domain wall in the context of E-string

theory compactified to 5 dimensions. Classically, this system has
SU(8)×U(1)F ×U(1)I symmetrywhere SU(8)×U(1)F is a sub-
group of E8 symmetry of the 6d E-string theory. The chiral mul-
tiplets Xi and X ′

i are fundamentals of SU(8). The U(1)F is the
Cartan of SU(2)F in SU(2)F × E7 ⊂ E8. We will use this U(1)F
in the construction of the domain wall. This coincides with the
U(1)F discussed above.[42] U(1)I is another gauge anomaly free
U(1) which acts on the 5d instanton particles. ThisU(1)I is asso-
ciated to the Kaluza-Klein momentum of the 6d E-string theory.
Since the 6d Kaluza-Klein states are truncated in the 4d limit,
the 4d theories cannot see thisU(1)I . SinceU(1)F has no mixing
with the U(1)I symmetry in the E-string theory, the domain wall

9 Bi-fundamental fields of the same kind appear in systemswithmultiple
D-branes divided by NS5-branes.
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−∞ ← → ∞
−m m

Figure 9. Duality domain wall (dotted line) flips mass sign of U (1)F symmetry. 5d E-string theory with duality wall corresponds to 6d E-string theory on
a tube with half a unit U (1)F flux.

action on U(1)F is independent of the 6d Kaluza-Klein momen-
tum. Therefore the 4d limit is well-defined in the presence of the
domain walls.
Recall that U(1)F is also a symmetry of the 6d theory, and in

this context we now explain why themass flipping by the domain
wall is related to 6d U(1)F flux.10 Suppose that the U(1)F flux is
localized along a circle in the location of the domainwall as drawn
in the right-handed side of Figure 9. The flux acts on 6d fermions
� as

�R = g �L , g = e2π i QF5656 , (4.2)

where Q is theU(1)F charge of the fermion�L and F56 is the flux
on the tube. 56 is a 6d gamma matrix bi-linear and it reduces
to γ 5 in the 5d reduction along the x6 direction. The mass sign
appears in front of the fermion mass terms in the Lagrangian of
the 5d E-string theory. In the presence of the 6d U(1) flux acting
as (4.2), the 5d fermion mass term on the right-handed side of
the flux wall becomes

m�̄R�R = m�
†
L g

†γ 0g�L = m�̄L e4π i QF56γ 5�L . (4.3)

Herewe have assumed that the fermions in the 5d E-string theory
transforms in the same manner as the 6d fermions under U(1)
flux.
The mass sign will be flipped by the flux when |QF56| = 1

4 .
In our domain wall construction, the fermion fields �i carry
the U(1)F charge − 1

2 . This means that an half-unit flux, i.e.
F56 = − 1

2 , changes the sign of themass parameter for thisU(1)F .
Therefore, we can say that the 5d domain wall flipping the mass
of U(1)F corresponds to half a unit flux of U(1)F of the E-string
theory in 6d . In other words we have learned that the 5d ‘duality
domain wall’ of [42] is the same as half a unit of U(1)F flux from the
6d perspective.

4.2. 4d Models from Tubes

We can derive all 4d models of tubes with fluxes directly from
the 5d E-string theory with domain walls on a segment with fi-
nite length L . According to our earlier discussion in section 2.6, a
puncture with SU(2) global symmetry at one end of the segment
is defined by the maximal boundary condition. Following this,
we set the maximal boundary condition on both ends of the seg-
ment. In low energy less than L−1, this leads to a new 4d theory
corresponding to the E-string theory on a tube with fluxes.
Let us first consider the case with a single domain wall. There

are two vector multiplets on the left and the right chambers. They

10 A similar construction relating 6d flux and 5d domain walls has been
studied in [52].

satisfy Neumann boundary condition at the domain wall. How-
ever, they are given Dirichlet boundary condition at the other
ends of the chambers. This implies that the vector multiplets
in both chambers are truncated in the 4d limit and thus two
SU(2)G gauge symmetries simply become 4d global symmetries
SU(2)× SU(2). For the hypermultiplets, the maximal boundary
condition sets Neumann boundary condition on X and Y ′ and
Dirichlet boundary condition on Y and X ′. The fields X and
Y ′ satisfy Neumann boundary condition on both ends of the
segment, thus they become 4d chiral multiplets. Therefore, the
E-string theory with a single duality domain wall on a segment
with the maximal boundary condition gives rise to a 4d La-
grangian theory with the chiral multiplets X , Y ′ coming from
the 5d theory coupled to the additional 4d fields q , b through the
superpotential (4.1). This 4d theory is precisely our E7 model of
a tube with half a unit U(1)F flux in Figure 6. We here derived
the E7 model of the E-string theory on a tube directly using its
5d reduction dressed by the duality domain wall. We note that
the U(1)F flux of this theory is − 1

2 which precisely agrees with
our claim that U(1)F flux introduced by a single domain wall is
‘one-half ’.
We can also consider more complicated configurations with

multiple domain walls on the segment. We expect that domain
wall configurations giving different fluxes lead to different 4d La-
grangian theories. Let us now study how to connect two or more
domain walls basically following the discussions in [42].
Suppose that we attach two domain walls and the first domain

wall turns on half a unit of U(1)F flux. Two domain walls divide
the 5d theory into three chambers. For the second domain wall,
we have many different choices ofU(1) flux. Let us first focus on
the second flux ± 1

2 for the same U(1)F symmetry.
Remember that the U(1)F flux is correlated to the choice of

the U(1) charges rotating the 4d fields q ′ and b′ in the second
domain wall as well as the 5d fields with Neumann boundary
condition in the second and the third chambers. If we turn on
the second flux − 1

2 , since this flux is in the same U(1)F as the
first flux, the 4d fields q and b at the first domain wall and q ′ and
b′ at the second domain wall should carry the sameU(1) charges.
Accordingly, a chiral half Y ′ of the hypermultiplets in the second
chamber and another chiral half X ′′ in the third chamber should
obey Neumann boundary condition. The superpotential of this
domain wall system is given by

W4d = Wx5=t1 + Wx5=t2 , Wx5=t1 = b detq + TrY ′q X,

Wx5=t2 = b′ detq ′ + TrY ′q ′X ′′, (4.4)

where t1, t2 are locations of two domain walls. The netU(1)F flux
of this system along the tube becomes − 1

2 − 1
2 = −1. Similarly,

we can concatenate a number of duality domain walls using the
sameU(1)F flux and construct a system of the E-string on a tube
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with generic flux. The net flux will become nwhen the number of
domain walls is 2n. We can put this 5d system on a finite segment
and give the maximal boundary conditions at both ends. In the
4d limit, this will yield the 4d E7 model of two punctured sphere
with n flux. For example, n = 1 case leads to the 4d E7 model in
Figure 7.
On the other hand, if we choose 1

2 as the flux in the second
domain wall, the 4d fields in the first domain wall and those in
the second domain wall will have opposite U(1) charges. In this
case, the chiral fields in Neumann boundary condition are X and
Y ′ at x5 = t1, and X ′ and Y ′′ at x5 = t2, and other chiral fields sat-
isfy Dirichlet boundary condition. Since X ′ and Y ′ have opposite
boundary conditions at both ends in the second chamber, all the
chiral fields in the second chamber become massive and we can
integrate them out. Integrating out these massive fields leaves a
quartic superpotential in 4d limit as follows:[42]

W4s = b detq + b′ detq ′ + Y ′′q ′q X. (4.5)

One can now show that this system reduces to an ‘empty’ domain
wall using Seiberg duality on the SU(2) gauge theory in the sec-
ond chamber. Namely, a combination of two duality domain walls
with opposite U(1) fluxes is equivalent to a system with no do-
main wall,[42] which is consistent with − 1

2 + 1
2 = 0 flux. For this

property of the duality domain wall, the 4d singlet field b, which
is called ‘flipping field’, is necessary.
From these examples we find a simple algorithm to construct

domain wall configurations giving genericU(1) fluxes. For this it
is convenient to use fluxes in the complete basis as each element
there corresponds to the flux felt by a single 5d hypermultiplet.
Then, for a given flux of a singleU(1) symmetry, we first decom-
pose it into a combination of half unit fluxes. For instance, con-
sider the flux vector (0, 0, 0, 0, −1, −1, −1, −1) which describes an
SO(14) preserving flux of strength−1. We can construct it using
a half-unitU(1) flux as

(0, 0, 0, 0,−1, −1, −1, −1) = ( − 1
2 , −1

2 , −1
2 , −1

2 ,−1
2 , −1

2 , −1
2 , −1

2

)
+ (

1
2 ,

1
2 ,

1
2 ,

1
2 , −1

2 , −1
2 , −1

2 ,−1
2

)
.

(4.6)

Next, we introduce a duality domain wall for each half a unit
flux and connect all of them together with suitable boundary con-
ditions. Boundary condition at the domain wall depends on the
flux associated to the domain wall. Each element in the vector of
the half-unit flux determines the boundary condition of the corre-
sponding 5d hypermultiplet. When i -th element is − 1

2 (or + 1
2 ),

the chiral field Xi (or Yi ) obeys Neumann boundary condition
and thus can couple to the 4d degrees of freedom in the domain
wall. When two domain walls are glued, a chiral field satisfying
Neumann boundary condition at both domain walls becomes a
4d chiral field. This 4d chiral field couples to chiral fields in the
adjacent chambers as well as the 4d fields q and b through the
superpotential (4.1). On the other hand, when the boundary con-
ditions at the two boundaries are different, the corresponding hy-
permultiplet is truncated and it will generate a quartic superpo-
tential, like the last term in (4.5), connecting chiral fields in the
two adjacent chambers. This will determine the boundary condi-
tion and the superpotentials for the hypermultiplets in the mid-

dle chamber. We can repeat these procedures for each domain
wall and fields in the corresponding chambers. We remark here
that the number of different elements between two flux vectors
of two adjacent domain walls should be even. Otherwise there
will be Z2 gauge anomaly for the SU(2) gauge symmetry in the
middle chamber. This is manifested in the 6d side by flux consis-
tency. Recall that fluxes in the complete basis are vectors on the
E8 root lattice. Then this follows from the structure of the E8 root
lattice.
For example, the SO(14) model with the flux decomposi-

tion in (4.6) can be constructed by a concatenation of two
domain walls with flux (−1

2 , −1
2 , −1

2 ,−1
2 , −1

2 , −1
2 , −1

2 , −1
2 ) and

( 12 ,
1
2 ,

1
2 ,

1
2 ,−1

2 , −1
2 , −1

2 , −1
2 ) respectively. In the first domain wall,

the chiral fields X1,2,··· ,8 in the first chamber and Y ′
1,2,··· ,8 in the

second chamber satisfy Neumann boundary condition, while in
the second domain wall the chiral fields Y ′

5,6,7,8 and X ′
1,2,3,4 in the

second chamber, and X ′′
5,6,7,8 and Y

′′
1,2,3,4 in the third chamber sat-

isfy Neumann boundary condition. This means the fields X ′
5,6,7,8

and Y ′
5,6,7,8 in the second chamber are truncated and the system

will have the superpotential,

W = b detq + b′ detq ′ +
8∑

i=5
(Y ′

i q Xi + Y ′
i q

′X ′′
i )+

4∑
i=1

Y ′′
i q q

′Xi .

(4.7)

When we put this system on a segment and impose the maxi-
mal boundary condition at both ends, we will obtain the SO(14)
model with flux (4.6), which is drawn in Figure 10(b).
The E6 model of half a unit flux can be constructed by domain

walls using the following flux decomposition

(0, 0, −1, −1, −1, −1, −1, −1)
= ( − 1

2 , −1
2 , −1

2 , −1
2 , −1

2 ,−1
2 , −1

2 , −1
2

)
+ (

1
2 ,

1
2 , −1

2 , −1
2 , −1

2 , −1
2 ,−1

2 , −1
2

)
. (4.8)

This leads to a domain wall configuration of the 4d superpoten-
tial

W = b detq + b′ detq ′ +
8∑

i=3
(Y ′

i q Xi + Y ′
i q

′X ′′
i )+

2∑
i=1

Y ′′
i q q

′Xi .

(4.9)

The chiral fields Xi ,Yi , X ′
i ,Y

′
i , X

′′
i ,Y

′′
i appearing in this superpo-

tential satisfy Neumann boundary condition at the boundaries.
This 5d system on a finite segment yields the 4d E6 model
in Figure 10(c). Similarly, we can construct the E ′

7 model in
Figure 10(d) from the flux decomposition

(0, 0, 0, 0, 0, 0, −1, −1) = ( − 1
2 , −1

2 , −1
2 , −1

2 , −1
2 ,−1

2 , −1
2 , −1

2

)
+ (

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , −1

2 , −1
2

)
. (4.10)

We claim that all tube models with generic U(1) fluxes can be
obtained by a combination of the duality domain walls. The num-
ber of domain walls and U(1) charge assignments for the fields
on each wall depends on the decomposition ofU(1) fluxes into a
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Figure 10. a. The E7 × U (1) sphere with two maximal punctures and half
unit of flux. b. The SO(14) × U (1) theory with two punctures and half unit
of flux. c. The E6 × SU (2) × U (1) theory with twomaximal punctures and
half unit of flux. d. Another representation of E7 × U (1) theory with two
punctures and half unit of flux. Gluing copies of this two a torus gives a
Seiberg dual to models constructed from the the first theory.

combination of half fluxes. Different decompositions give rise to
different domain wall configurations, and therefore to different
4d Lagrangian tube models. However, as long as their net fluxes
are the same (up to E8 Weyl symmetry), all the different 4d mod-
els should describe the same physics at their conformal points.
Therefore, we expect that our 5d domain wall picture can lead to a
huge number of 4d (and also 5d) dualities between tube models.
The simplest duality example of this type is the duality between

the E7 and the E ′
7 models in Figure 10(a) and 10(d). They are con-

structed by using different number of domain walls. However,
their net fluxes are the same up to the Weyl transformation, thus
we can expect a duality between these two theories. Indeed, they
are Seiberg-dual to each other.

Anomalies of Two Punctured Spheres

Let us now compute the anomalies of some of the spheres with
two punctures. Knowing the anomaly polynomial and the 5d
gauge theory description of a puncture of the 6d E-string theory
discussed in section 2 allows us to compute the anomalies of 4d
theories of punctured Riemann surfaces. The 4d anomalies are
obtained, as we discussed above, by adding the geometric contri-
butions and the 5d anomaly inflow contribution.We can compare
the anomalies of two punctured spheres, which we compute di-
rectly from the 6d anomaly polynomial and the 5d boundary con-
ditions, with the anomalies of the corresponding 4d models we

will discuss later on. This will provide another strong evidence
that our 4d models of punctured Riemann surfaces are consis-
tent with compactifications of the 6d E-string theory. Here wewill
compute the anomalies for some simple test cases and compare
them with expectations based on corresponding 4d field theories
proposed in the following sections.
Let us first compute the anomalies of the E7 model from the

two punctured sphere with flux−zusing the 6d anomaly polyno-
mial and the 5d boundary condition. The geometric contribution
is given by

Tr (U(1)3F ) = −12zξ 2, Tr (U(1)F ) = −12zξ,

Tr (U(1)FU(1)2R) = 4zξ, Tr (U(1)3R) = Tr (U(1)R) = 0, (4.11)

with z = 1
2 and ξ = 1. The U(1)F with flux − 1

2 acts on the eight
hypermultiplets in the 5d E-string theory with the same charge
− 1

2 . Thus the anomaly inflow contribution from a single punc-
ture is

Tr (U(1)3R) = −3
2
, Tr (U(1)R) = −3

2
, Tr (U(1)RSU(2)2) = −1,

Tr (U(1)3F ) = −1, Tr (U(1)F ) = −4, Tr (U(1)F SU(2)2) = −1.
(4.12)

The total anomalies are given by the sum of the geometric con-
tribution and the anomaly inflows from two punctures which we
find

Tr (U(1)3R) = −3, Tr (U(1)R) = −3,

Tr (U(1)3F ) = −2− 12z, Tr (U(1)F ) = −8− 12z,

Tr (U(1)FU(1)2R) = 4z,

Tr (U(1)RSU(2)21,2) = −1, Tr (U(1)F SU(2)21,2) = −1, (4.13)

where SU(2)1 and SU(2)2 are puncture symmetries of two punc-
tures respectively. As previously mentioned, this result agrees
with the anomalies of the WZ model, introduced in the previous
section, which corresponds to E7 compactification on a sphere
with two punctures and a unit of flux, shown in Figure 6.
We can also compute the anomalies of the two punc-

tured sphere with E6 × SU(2) symmetries. The hypermulti-
plets in the 5d E-string theory transform under the U(1)F ,
which is identified with 1

2U(1)m in Figure 14, with charges
(−3

2 , −3
2 ,−1

2 , −1
2 , −1

2 , −1
2 , −1

2 ,−1
2 ). This theory has the following

anomalies.

Tr (U(1)3F ) = (−108z)geo + 2×
(
−15
2

)
inf

= −15−108z,

Tr (U(1)3R) = 2×
(
−3
2

)
inf

= −3,

Tr (U(1)F ) = (−36z)geo + 2× (−6)inf = −12− 36z,

Tr (U(1)R) = 2×
(
−3
2

)
inf

= −3,
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n1 n2 n3 m1 m2 m3 mknj

i

ni =
i

mi

Figure 11. There is a duality between different domain wall configurations obtained by different decompositions of flux. ni and mi are U (1) fluxes at
each domain wall. If

∑
i ni = ∑

i mi , then two configurations describe the same physics.

Figure 12. The U (1) × SO(14) model from torus with one unit of flux.
There is a cubic superpotential for each one of the four internal triangles,
and two quartic ones for the bifundamentals of the external SU (4) with
the upper and lower half-circles. There is a natural R-symmetry, which is
the one the theory inherits from 6d , under which the gauge bifundamen-
tal have R-charge 0, the flippers R-charge 2, and the rest R-charge 1. Be-
sides the two SU (4) global symmetries there are also two non-anomalous
U (1)’s which we denote as U (1)m and U (1)y . The charges of all the fields
under these U (1)’s are represented by fugacities.

Tr (U(1)FU(1)2R) = (12z)geo = 12z,

Tr (U(1)F SU(2)21,2) =
(

−3
2

)
inf

= −3
2
. (4.14)

Here, the subscripts geo and inf stand for the geometric contri-
bution and the anomaly inflow contribution respectively. This re-
sult perfectly equals the 4d anomalies of our E6 × SU(2) model
in Figure 11c.
Similarly, the anomalies for the SO(14) theory from two punc-

tured sphere can be easily computed. The 5d hypermultiplets
carry (0, 0, 0, 0, −1, −1, −1, −1) charge for theU(1)F (orU(1)m in
Figure 12). Regarding this, the anomalies are given by

Tr (U(1)3F ) = (−48z)geo + 2× (−4)inf = −8− 48z,

Tr (U(1)3R) = 2×
(

−3
2

)
inf

= −3,

Tr (U(1)F ) = (−24z)geo + 2× (−4)inf = −24z− 8,

Tr (U(1)R) = 2×
(

−3
2

)
inf

= −3,

Tr (U(1)FU(1)2R) = (8z)geo = 8z,

Tr (U(1)F SU(2)21,2) = (−1)inf = −1, (4.15)

which are the same as the anomalies of the SO(14) model in
Figure 10b.

5. Tori and Spheres with General Fluxes

We have constructed the theory associated to two punctured
sphere for flux preserving E7 ×U(1) matching anomalies of six
dimensions and four dimensional construction in section three
and understood how to derive two punctured spheres from this
theory for more general fluxes in the previous section. Here we
will discuss the field theory constructions in detail for several dif-
ferent compactifications. In particular we will discuss how the
anomalies and the symmetries of the quiver theories at hand ex-
hibit the properties expected from six dimensional computations.

5.1. Rank one E-String on a Torus: E 8 → G × U (1)

The most simple examples of tubes with flux in oneU(1) are de-
picted in Figure 10 and we will discuss them in detail next.

SO(14) × U (1)

We have already argued that the theory corresponding to a
sphere with two punctures and half a unit of flux breaking E8

to SO(14)×U(1) is depicted in Figure 10(b). In terms of the flux
basis we associate to it the flux (− 1

2 ;
1
4 ,

1
4 ,

1
4 ,

1
4 ,− 1

4 , − 1
4 , − 1

4 ,− 1
4 )

in the overcomplete basis and (0, 0, 0, 0,−1, −1, −1, −1) in the
complete basis, where the last fourU(1)’s are associated with the
SU(4) global symmetry seeing more flavors. We can verify that
the anomalies of the sphere with two punctures match the com-
putation in six dimensions.
Gluing two such spheres together into a torus we obtain the

theory shown in Figure 12. This theory then corresponds to an
SO(14) preserving torus compactification with unit flux. Next
we shall analyze it in detail. First consider the case without the
flipping fields. We inquire as to what is the superconformal
R-symmetry, where the 6d R-symmetry can mix with the two
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U(1)’s. However we note that the charges under U(1)y are bal-
anced so there is no mixing involving it. Thus the superconfor-
mal R-symmetry will be:U(1)SCR = U(1)6dR + αU(1)m. Performing
a-maximization we find α =

√
19−3
3 . We find that all gauge invari-

ant operators have dimension above the unitary bound so it is
plausible that this theory flows to an interacting IR SCFT.
Now we add 4 singlets and couple them through the flipping

superpotential. We find that this superpotential is relevant com-
pared to the SCFT point so the theory will flow to a new theory in
the IR. We can repeat the a-maximization for this case, finding:
α =

√
2
3 . Using this values we obtain for the conformal anoma-

lies,

c = 5
2

√
2, a = 2

√
2. (5.1)

This agrees with the six dimensional computation noting that for
SO(14) ξ = 2. Also we find that all gauge invariant operators are
above the unitary bound so it is again plausible that this theory
flows to an interacting SCFT in the IR. Note that the singlets do
not have free R-charge in the SCFT and are thus an inseparable
part of it.
The 6d construction suggests that this theory has an SO(14)

global symmetry somewhere on its conformal manifold. This
is definitely not visible from the Lagrangian so to test this
we wish to evaluate the superconformal index. For this it is
convenient to work with the non-superconformal R-symmetry:
U(1)

′
R = U(1)6dR + 1

2U(1)m. Note that
√
2
3 − 1

2 ≈ −0.03, so this
R-symmetry is very close to the true SC R-symmetry. Using this
R-symmetry we indeed find that the index can be written in char-
acters of SO(14) at least to the order we evaluated. Particularly,
the first terms in the supersymmetric index are,

I = 1+ 2
m2

χ [14](pq )
1
2 + 1

m
χ [64](pq )

3
4 + 2

m2
χ [14](pq )

1
2 (p + q )

+ pq
(
m4 + 1

m4
(3χ [104]+ χ [91]− 1)

)
+ · · · (5.2)

where

χ [14] = y2 + 1
y2

+ χ [6, 1]+ χ [1, 6],

χ [64] = y(χ [4, 4]+ χ [4, 4])+ 1
y
(χ [4, 4]+ χ [4, 4]). (5.3)

We next note several observations regarding the index. First
it indeed forms characters of SO(14) where SU(4)× SU(4)×
U(1)y is enhanced to this symmetry. It is interesting to note that
the two SU(4) appear asymmetrically in the Lagrangian, but are
symmetric in SO(14). All the anomalies are consistent with the
enhancement and with the 6d result.
The order pq terms indicate that there are no marginal oper-

ators as all operators appearing at that order are charged under
U(1)m. Specifically, them4 state is relevant while the ones propor-
tional to 1

m4 are irrelevant. Note that these contain negative con-
tributions and so the fact that they are irrelevant avoids a contra-
diction with the results of [49]. If we wish to interpret the SO(14)
as the global symmetry somewhere on the conformal manifold,

Figure 13. The SO(14) × U (1) model from torus with half a unit of flux.
There is a cubic superpotential for the two triangles, and a quartic one for
the bifundamentals of the lower right SU (4) with the two gauge bifunda-
mentals. Said quartic superpotential actually breaks the SU (4) down to
U Sp(4). There is a natural R-symmetry, which is the one the theory in-
herits from 6d , under which the gauge bifundamentals have R-charge 0,
the flippers R-charge 2, and the rest R-charge 1. Besides the SU (4) and
U Sp(4) global symmetries there is now only one non-anomalous U (1)
corresponding to U (1)m. Its charges are represented in the figure by fu-
gacities.

then we must view this term as χ [91]+ 1− χ [91]− 1. This leads
to an 8 dimensional conformal manifold on a generic point of
which the symmetry is broken toU(1)8. This picture is consistent
with the 6d conformalmanifold generated via holonomies.We do
not observe the complex structure moduli of the torus though it
does not appear also in the case without the flux. In this case the
theory is strongly coupled and we do not have a weak coupling
point to compare against.
We can again identify some of the contributions as com-

ing from the 6d conserved current multiplet of the E8 global
symmetry. Particularly, the contributions 2

m2 χ [14](pq )
1
2 and

1
mχ [64](pq )

3
4 have the same R-charge as marginal operators un-

der the 6d R-symmetry. Furthermore the representations they
carry exactly match those required to complete SO(14) to E8

(again we refer the reader to Appendix A for the branching rule).
Interestingly, their number is again exactly as expected from the
reasoning of [31]. As previously mentioned, the marginal opera-
tors also behave as expected save for the absence of the marginal
deformation expected from the complex structure moduli of the
torus.
We can combine several spheres to form a torus with any value

of the flux. When combining an odd number of spheres though
some of the global symmetry is broken. For example consider
closing the basic tube by gluing the two punctures. This results
in the theory shown in Figure 13. In the gluing we are forced to
break U(1)y and also one of the SU(4) groups toUSp(4).
Besides these points the dynamics of the theory are very sim-

ilar to the previous case. Specifically, since the matter content is
exactly half the one in the previous case, and as there was nomix-
ing underU(1)y , the R-symmetry maximizing a will be the same.
The dimensions of all the operators are again the same so there
are no violations of the unitary bound. Thus we expect again that
this theory flows to an interacting SCFT. The anomalies are half
those of the previous case which will therefore agree with the 6d
analysis.
The interesting feature in this case is the breakdown of part of

the global symmetry. From the 6d view point the breaking is done
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due to the center flux necessary for consistency of the compactifi-
cation. From group theory the maximal global symmetry one can
preserve is SO(11), and so we expect the index of the theory to
form characters of SO(11). To check this we computed the index
finding:

I = 1+
(
3
m2

+ m2 + 1
m2

χ [11]
)
(pq )

1
2 + 1

m
χ [32](pq )

3
4

+
(
3
m2

+ 1
m2

χ [11]
)
(pq )

1
2 (p + q )

+ pq
(
m4 + 1

m4
(χ [65]+ 3χ [11]+ 5)

)
+ · · · (5.4)

where

χ [11] = χ [6, 1]+ χ [1, 5],

χ [32] = χ [4, 4]+ χ [4, 4], (5.5)

and the index is evaluated using the same R-symmetry as before.
One can note that the index forms characters of a larger global

symmetry SO(12), which cannot be realized from the 6d con-
struction. However, the 6d picture suggests that besides SO(11)
one can also have SU(2)× SO(9) and USp(4)× SO(7) as global
symmetries at special points on the conformalmanifold. It is pos-
sible to show that the index is also consistent with these symme-
tries. These are not subgroups of one another but they are all
subgroups of SO(12) so the apparent SO(12) structure can be
understood as arising from the need to accommodate all these
different global symmetries.
We can study the conformal manifold from the pq order

terms. As the terms appearing are charged under U(1)m, they
are actually relevant or irrelevant deformations. Therefore the
marginal operators must be in the adjoint of the global sym-
metry group. Assuming that there is a point with SO(11)×
U(1)m global symmetry, this leads to a 6 dimensional confor-
mal manifold. Note that there is no contradiction with also hav-
ing points with SU(2)× SO(9)×U(1)m and USp(4)× SO(7)×
U(1)m global symmetries as the rank of all of these groups is
equal.However, SO(12)×U(1)m has different rank and therefore
is inconsistent with the other choices. Thus, if the 6d picture is
correct, even though the index forms characters of SO(12) it can-
not have that symmetry on a point in the conformal manifold.

E 6 × SU (2) × U (1)

It follows from section 4 that the theory corresponding to a sphere
with two puncture and half a unit of flux breaking E8 to E6 ×
SU(2)×U(1) is depicted in Figure 10(c). In terms of the flux ba-
sis we associate to it the flux (− 3

4 ;
3
8 ,

3
8 , − 1

8 , − 1
8 , − 1

8 , − 1
8 , − 1

8 , − 1
8 )

in the overcomplete basis and (0, 0, −1, −1, −1, −1, −1, −1) in
the complete basis. The last sixU(1)’s are associated to the SU(6)
flavor symmetry group. Gluing two such spheres together into a
torus we obtain the theory shown in Figure 14. This theory then
corresponds to an E6 × SU(2)×U(1) preserving torus compact-
ification with unit flux. Next we shall analyze it in details.

Figure 14. The E6 × U (1) × SU (2)model from torus with one unit of flux.
There is a cubic superpotential for each one of the four internal triangles,
and two quartic ones for the bifundamentals of the external SU (2) with the
upper and lower half-circles. There is a natural R-symmetry, which is the
one the theory inherits from 6d , under which the gauge bifundamentals
have R-charge 0, the flippers R-charge 2, and the rest R-charge 1. Besides
the SU (6) × SU (2) global symmetries there are also two non-anomalous
U (1)’s which we denote as U (1)m and U (1)y . The charges of all the fields
under these U (1)’s are represented by fugacities.

First consider the case without the flipping fields. We inquire
as to what is the superconformal R-symmetry, where the 6d R-
symmetry can mix with the twoU(1)’s. However we note that the
charges under U(1)y are balanced so there is no mixing involv-
ing it. Thus the superconformal R-symmetry will be: U(1)SCR =
U(1)6dR + αU(1)m. Performing a-maximization we find α = 5

27 .
We find that all gauge invariant operators have dimension above
the unitary bound so it is plausible that this theory flows to an
interacting IR SCFT.
Now we add 4 singlets and couple them through the flipping

superpotential. We find that this superpotential is relevant com-
pared to the SCFT point so the theory will flow to a new theory in
the IR. We can repeat the a-maximization for this case, finding:
α = 1

3
√
3
. Using this value we obtain for the conformal anomalies,

c = 5
2

√
3, a = 2

√
3. (5.6)

This agrees with the six dimensional computation noting that for
SU(2)× E6 ξ = 3. Also we find that all gauge invariant operators
are above the unitary bound so it is again plausible that this theory
flows to an interacting SCFT in the IR. Note that the singlet do
not have free R-charge in the SCFT and are thus an inseparable
part of it.
The 6d construction suggests that this theory has an SU(2)×

E6 global symmetry somewhere on its conformal manifold. This
is definitely not visible from the Lagrangian so to test this
we wish to evaluate the superconformal index. For this it is
convenient to work with the non-superconformal R-symmetry:
U(1)

′
R = U(1)6dR + 2

9U(1)m. Note that 1
3
√
3

− 2
9 ≈ −0.03, so this
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R-symmetry is very close to the true SC R-symmetry. Using this
R-symmetry we indeed find that the index can be written in char-
acters of SU(2)× E6 at least to the order we evaluated. Particu-
larly, the first terms in the supersymmetric index are,

I = 1+ 3
m6

χ [2, 1](pq )
1
3 + 2

m4
χ [1, 27](pq )

5
9

+ 3
m6

χ [2, 1](pq )
1
3 (p + q )+ 3

m12
(1+ 2χ [3, 1])(pq )

2
3

+ 1
m2

χ [2, 27](pq )
7
9 + 6

m10
χ [2, 27](pq )

8
9

+ pq
2
m18

(5χ [4, 1]+ 4χ [2, 1])+ · · · (5.7)

where

χ [2, 1] = y2 + 1
y2

,

χ [1, 27] = χ [2, 6]SU(2)×SU(6) + χ [1, 15]SU(2)×SU(6). (5.8)

We next note several observations regarding the index. First it
indeed forms characters of SU(2)× E6 where SU(2)× SU(6)×
U(1)y is enhanced to this symmetry. All the anomalies are consis-
tent with the enhancement and with the 6d result. We note that
U(1)m is identified with 2U(1) when we use the normalization
convention of unit charge. From the order pq terms we see that
there are no marginal operators as all operators appearing at that
order are charged under U(1)m. In this case they are all charged
negatively and so are irrelevant.
If we wish to interpret the SU(2)× E6 as the global symmetry

somewhere on the conformal manifold, then we must view this
term as χ [3, 1]+ χ [1, 78]+ 1− χ [3, 1]− χ [1, 78]− 1. This leads
to an 8 dimensional conformal manifold on a generic point of
which the symmetry is broken toU(1)8. This picture is consistent
with the 6d conformal manifold generated via holonomies. We
again do not observe the complex structure moduli of the torus.
Like the previous case, this theory is strongly coupled and we do
not have a weak coupling point to compare against.
We can again identify some of the contributions as com-

ing from the 6d conserved current multiplet of the E8

global symmetry. Particularly, the contributions 3
m6 χ [2, 1](pq )

1
3 ,

2
m4 χ [1, 27](pq )

5
9 and 1

m2 χ [2, 27](pq )
7
9 have the same R-charge as

marginal operators under the 6d R-symmetry. Furthermore the
representations they carry exactly match those required to com-
plete SU(2)× E6 to E8 (once again we refer the reader to Ap-
pendix A for the branching rule). Their number is again exactly
as expected from the reasoning of [31]. Marginal operators also
behave as expected except for the lack of the marginal deforma-
tion expected from the complex structure moduli of the torus.
We can combine many copies of the sphere to construct the-

ory with arbitrary flux preserving E6 × SU(2) symmetry. Again
the model behaves differently depending on whether the flux is
integer or half-integer, where in the half-integer caseU(1)y is bro-
ken. From the 6d perspective this comes about as the non-integer
fluxmust be accompanied by a center flux, here inside the SU(2).
This center flux in turn breaks it completely.

Figure 15. The E6 × U (1) × SU (2) model from torus with half a unit of
flux. There is a cubic superpotential for the two triangles, and a quartic
one for the bifundamentals of global SU (2) with the two gauge bifunda-
mentals. There is a natural R-symmetry, which is the one the theory in-
herits from 6d , under which the gauge bifundamentals have R-charge 0,
the flippers R-charge 2, and the rest R-charge 1. Besides the SU (6) and
SU (2) global symmetries there is now only one non-anomalous U (1) cor-
responding to U (1)m. Its charges are represented in the figure by fugaci-
ties.

As an example consider the case of flux half generated by con-
necting the two punctures of the basic tube. The quiver diagram
of this model is shown in Figure 15. Most of the dynamical prop-
erties are similar to the previous model save for the loss ofU(1)y .
Particularly, the superconformal R-symmetry and the dimension
of the operators are the same as there was no mixing withU(1)y .
Thus, it is possible that this theory also goes to an interacting
fixed point.
From the 6d perspective we expect aU(1)× E6 global symme-

try at some point on the conformal manifold. Again to test this
we evaluate the superconformal index.We shall again employ the
non-superconformal R-symmetryU(1)

′
R. We indeed find that the

index forms characters of E6, at least to the order evaluated where
it reads:

I = 1+ 3
m6

(pq )
1
3 + 1

m4
χ [27](pq )

5
9 + 3

m6
(pq )

1
3 (p + q )

+
(

6
m12

+ m6

)
(pq )

2
3 + 1

m2
χ [27](pq )

7
9 + 3

m10
χ [27](pq )

8
9

+ pq
10
m18

+ · · · (5.9)

Here the characters of E6 are given by the SU(2)× SU(6) sub-
group as in (5.8).

E ′
7 × U (1)

We can also construct a theory which is obtained by compact-
ification on sphere with two punctures and flux preserving E7

but a different embedding than the one considered above. This is
depicted in Figure 10(d). The two models are related by Seiberg
duality[53] once we build tori out of them. In terms of the flux
basis this tube has the flux (− 1

4 ;
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 , − 3

8 , − 3
8 ) in the

overcomplete basis and (0, 0, 0, 0, 0, 0, −1, −1) in the complete
basis. The last two flux values are for the U(1)’s associated with
the SU(2) global symmetry.
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Figure 16. The E ′
7 × U (1) model from torus with one unit of flux. A

Seiberg duality of one of the nodes with three flavors brings us to the
E7 × U (1) model we considered in previous section.

Two of the four gauge nodes have three flavors and thus per-
forming a Seiberg duality on them we trade those with the fif-
teen gauge invariant mesonic and baryonic operators. The the-
ory is then equivalent to torus with one unit of flux preserving
E7 ×U(1).
This sphere with punctures is useful as it allows us to construct

differentmodels and performmany checks of the proposed corre-
spondence between compactifications and four dimensional field
theories.

5.2. Rank One E-String on a Torus: E 8 → G × U (1) × U (1)

We can construct theories with flux for more than one U(1) by
combining different spheres together. The resulting theories de-
pend on the type of theories connected and on how these are con-
nected. For example when connecting different tubes we have
the freedom of choosing how the different global symmetries are
embedded in one another. In fact we can even make non-trivial
theories by connecting the same tube but with a non-trivial iden-
tification of the global symmetries, which we can describe by a
permutation of theU(1)’s inside SU(8). As there are fluxes asso-
ciated with these U(1)’s, when connecting surfaces this way the
total flux on the resulting surface will change.
Clearly the possible theories one can build in this way is con-

siderable, and we shall not examine all of them in detail. Instead
we shall show some examples where we choose two tubes, and
some way of connecting them, and study the anomalies of the
resulting theories. The aim here is to show that these agree with
the 6d predictions, which then serves as a consistency check on
our proposal. Naturally one can study more complicated models,
which can be used to realize other compactification types. Alter-
natively one can try to build equivalent surfaces in different ways,
which are then expected to give dual theories. It may then be in-
teresting to see if any new dualities arise in this way. We reserve
these issues for future work.
There is one subtlety in this construction regarding the central

fluxes, which exist in all of these tubes. If present these lead to a
breakdown of part of the global symmetry once the tube is closed.
As a result, if one wishes to preserve the global symmetry, one
must connect tubes with integer flux. Note that this is also true
for tubes connected with a permutation of the SU(8), as this may
change the central flux element. As a result two identical half-flux
tubes connected in this more general way may still carry non-
trivial center flux.

Figure 17. Two spheres of E7 × U (1) combined with two E6 × SU (2)
spheres. The chiral fields are weighed by qaa + qbb with qa and qb charges
underU (1)a andU (1)b symmetries. The quiver is to be imagined as drawn
on a sphere with the SU (2) flavor node depicted by incomplete square lo-
cated at infinity.

E 6 × U (1) × U (1)

Let us consider gluing 2m copies of the E7 sphere to 2n ones of
the E6 × SU(2) theory. We depict an example in Figure 17. To
glue the two types of spheres we split the SU(8) of the E7 trin-
ion to SU(6)× SU(2)×U(1). The theory hasmanifestly SU(2)×
SU(6)×U(1)b ×U(1)a . For all values of flux the symmetry group
enhances to E6 ×U(1)×U(1).
The anomalies can be computed to give,

c = 5
2

√
m2 + 3mn + 3n2, a = 2

√
m2 + 3mn + 3n2. (5.10)

The mixing is given as,

R = R′ + −m− n

3
√
m2 + 3mn + 3n2

qa − m+ 2n

3
√
m2 + 3nm+ 3n2

qb .

(5.11)

There are several cases with enhanced symmetry. Obviously, n =
0 is E7 and m = 0 is E6 × SU(2). Take m = −n or m = −2n and
we get E7. Note that the square root multiplying the anomalies

can be rewritten in a diagonal basis of fluxes
√
(m2 )

2 + 3(n + m
2 )

2.

From the 6d view point we compactify the E-string on a torus
with flux (−m− 3n

2 ;
3n
4 , 3n

4 , − n
4 , − n

4 , − n
4 , − n

4 , − n
4 , − n

4 ) in the
overcomplete basis and (−m, −m,−m− 2n,−m− 2n, −m−
2n, −m− 2n, −m− 2n, −m− 2n) in the complete basis.Wenow
see that,

∑
i

ξi z2i =
(
m+ 3n

2

)2

+
(
3n
4

)2

+ 3
(n
4

)2

= 1
8
(2m2 + 6(m+ 2n)2) = m2 + 3mn + 3n2. (5.12)

Using this together with (2.15) we recover (5.10).
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Figure 18. Two spheres of E7 × U (1) combined with two SO(14) × U (1)
spheres. The chiral fields are weighed by qaa + qbb with qa and qb charges
under U (1)a and U (1)b symmetries.

SO(12) × U (1) × U (1)

Let us consider gluing 2m copies of the E7 sphere to 2n ones
of the SO(14) theory. We depict an example in Figure 18. To
glue the two types of spheres we split the SU(8) of the E7 trin-
ion to SU(4)× SU(4)×U(1). The theory hasmanifestly SU(4)×
SU(4)×U(1)b ×U(1)a . For all values of flux the symmetry group
enhances to SO(12)×U(1)×U(1).
The anomalies can be computed to give,

c = 5
2

√
m2 + 2mn + 2n2, a = 2

√
m2 + 2mn + 2n2. (5.13)

The mixing is given as,

R = R′ − m

3
√
m2 + 2nm+ 2n2

aa + −m− 2n

3
√
m2 + 2nm+ 2n2

qb .

(5.14)

There are several cases with enhanced symmetry. Obviously,
n = 0 is E7 and m = 0 is SO(14). Take m = −n we get E7, or
m = −2n and we get SO(14). Note that the square root multiply-
ing the anomalies can be rewritten in a diagonal basis of fluxes√
(n + m)2 + n2.
From the 6d view point we compactify the E-string on a torus

with flux (−m− n; n2 ,
n
2 ,

n
2 ,

n
2 , − n

2 ,− n
2 , − n

2 , − n
2 ) in the overcom-

plete basis and (−m, −m, −m, −m, −m− 2n, −m− 2n, −m−
2n, −m− 2n) in the complete basis. We now see that,

∑
i

ξi z2i = (m+ n)2 + 2
(n
2

)2
+ 2

(n
2

)2

= 1
8
(4m2 + 4(m+ 2n)2) = m2 + 2nm+ 2n2. (5.15)

Using this together with (2.15) we recover (5.13).

Figure 19. Sphere with two punctures from gluing one E6 × U (1) ×
SU (2) sphere and one SO(14) × U (1) sphere. The A and B SU (2) sym-
metries correspond to punctures.

SO(10) × SU (2) × U (1) × U (1) and SO(10) × SU (3) × U (1)

We can consider combining 2m SO(14) theories with 2n E6 ×
SU(2) ones. To glue the two types of spheres we split the SU(6) of
the E6 × SU(2) trinion to SU(4)× SU(2)×U(1), and the SU(4)
with the least amount of flavors to SU(2)× SU(2)×U(1). For
general choices of the flux, that is of m and n, the symmetry
expected from this model is SO(10)× SU(2)×U(1)2. Explicitly
in the Lagrangian we see SU(4)× SU(2)× SU(2)×U(1)3. See
Figure 19 for an example.
Tuning the fluxes, it is possible to reach values for which

the SO(10)× SU(2)×U(1)2 symmetry is enhanced to SO(10)×
SU(3)×U(1). When we combine 2m SO(14) tubes with 2n E6

ones the anomalies we get are,

c = 5
2

√
2m2 + 4mn + 3n2, a = 2

√
3n2 + 4nm+ 2m2. (5.16)

In particular when n = −2m the anomalies are of SO(10)×
SU(3)×U(1) compactification. The negative sign just indicates
that we need to combine the SO(14) and E6 tubes with S gluing.
Diagonal basis here is

√
2(n + m)2 + n2.

From the 6d view point we compactify the E-string on a
torus with flux (−m− 3n

2 ;
m
2 + 3n

4 , m
2 + 3n

4 , m
2 − n

4 ,
m
2 − n

4 , −m
2 −

n
4 , −m

2 − n
4 , −m

2 − n
4 ,−m

2 − n
4 ) in the overcomplete basis and

(0, 0, −2n, −2n, −2n − 2m, −2n − 2m, −2n − 2m, −2m− 2m)
in the complete basis. Note that the relative orientation of the
fluxes is dictated by the manner in which the global symmetry is
identified between the tubes. We now see that,

∑
i

ξi z2i

=
(
m+ 3n

2

)2

+
(
m
2

+ 3n
4

)2

+
(m
2

− n
4

)2
+ 2

(m
2

+ n
4

)2

= 1
8
(2(2n)2 + 4(2m+ 2n)2) = 3n2 + 4nm+ 2m2. (5.17)

Using this together with (2.15) we recover (5.16).
Let us now discuss a simple model corresponding to an

SO(10)× SU(3)×U(1) compactification. We can have n = −2
and m = 1. Naively we have twelve gauge groups, but because
some of the gluings are S gluings, six of the gauge groups
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Figure 20. The SO(10) × U (1) × SU (3) model from torus with one unit
of flux. There is a cubic superpotential for each one of the six internal tri-
angles, and six quartic ones for the bifundamentals involving the external
SU (2)’s with 1200 semi-circles. There is a natural R-symmetry, which is
the one the theory inherits from 6d , under which the gauge bifundamen-
tals have R-charge 0, the flippers R-charge 2, and the rest R-charge 1. Be-
sides the SU (4) × SU (2) × SU (2) global symmetries there are also three
non-anomalous U (1)’s which we denote as U (1)x , U (1)y and U (1)z . The
charges of all the fields under these U (1)’s are represented by fugacities.

have two flavors in some duality frame and thus we get in the
end only six gauge groups. The theory we consider is shown in
Figure 20. As usual we first consider the case without the flipping
fields. Performing a-maximization we find that only the diago-
nal U(1)d = U(1)x +U(1)y +U(1)z mixes with the R-symmetry,
where the superconformal R-symmetry is: U(1)SCR = U(1)6dR +
(2−

√
46
3 )U(1)d . We find that all gauge invariant operators have

dimension above the unitary bound so it is plausible that this
theory flows to an interacting IR SCFT.
Now we add 6 singlets and couple them through the flipping

superpotential. We find that this superpotential is relevant com-
pared to the SCFT point so the theory will flow to a new the-
ory in the IR. We can repeat the a-maximization for this case,
where we again find that only U(1)d mixes, but now: U(1)SCR =
U(1)6dR −

√
2

3
√
3
U(1)d . Using this value we obtain for the conformal

anomalies,

c = 5
2

√
6, a = 2

√
6. (5.18)

This agrees with the six dimensional computation noting that for
SO(10)× SU(3) ξ = 6. Also we find that all gauge invariant op-
erators are above the unitary bound so it is again plausible that

this theory flows to an interacting SCFT in the IR. Note that the
singlet do not have free R-charge in the SCFT and are thus an
inseparable part of it.
The 6d construction suggests that this theory has an SO(10)×

SU(3) global symmetry somewhere on its conformal manifold.
This is definitely not visible from the Lagrangian so to test this
we wish to evaluate the superconformal index. For this it is
convenient to work with the non-superconformal R-symmetry:
U(1)

′
R = U(1)6dR − 1

3U(1)d . Note that −
√
2

3
√
3

+ 1
3 ≈ 0.06, so this

R-symmetry is very close to the true SC R-symmetry. Using this
R-symmetry we indeed find that the index can be written in char-
acters of SO(10)× SU(3) at least to the order we evaluated. Par-
ticularly, the first terms in the supersymmetric index are,

I = 1+ 4(xyz)
4
3 χ [3, 1](pq )

1
3 + 3xyzχ [1, 16](pq )

1
2

(2(xyz)
2
3 χ [3, 10]+ 10(xyz)

8
3 χ [6, 1]

+ 6(xyz)
8
3 χ [3, 1])(pq )

2
3 + · · · (5.19)

where

χ [3, 1] = 1

(xyz)
4
3
(x4 + y4 + z4),

χ [1, 10] = χ [2, 2, 1]SU(2)×SU(2)×SU(4) + χ [1, 1, 6]SU(2)×SU(2)×SU(4),

χ [1, 16] = χ [2, 1, 4]SU(2)×SU(2)×SU(4) + χ [1, 2, 4]SU(2)×SU(2)×SU(4).

(5.20)

We next note several observations regarding the index. First
it indeed forms characters of SO(10)× SU(3) where SU(2)×
SU(2)× SU(4) is enhanced to SO(10) while the non-diagonal
combinations of U(1)x, U(1)y and U(1)z combine to form the
SU(3). All the anomalies are consistent with the enhancement
and with the 6d result. We note that U(1)d is identified with
−U(1) whenwe use the normalization convention of unit charge.
We can again identify some of the contributions as com-

ing from the 6d conserved current multiplet of the E8 global
symmetry. Particularly, the contributions 4(xyz)

4
3 χ [3, 1](pq )

1
3 ,

3xyzχ [1, 16](pq )
1
2 and 2(xyz)

2
3 χ [3, 10] have the same R-charge

as marginal operators under the 6d R-symmetry. Furthermore
the representations they carry exactly match those required to
complete SU(3)× SO(10) to E8, at least up to the order we eval-
uated the index (once again we refer the reader to Appendix A for
the branching rule). Their number is again exactly as expected
from the reasoning of [31]. There is one more relevant operator
that should contribute at higher orders. As we did not get to order
pq , we cannot comment on the marginal operators.

Combining E 7 × U (1) and E ′
7 × U (1)

Consider combining 2nmodels of E7 type and 2m of E ′
7 kind. The

symmetry for general flux is SO(12)×U(1)×U(1). The anoma-
lies can be computed to give,

c = 5
2

√
m2 + mn + n2, a = 2

√
m2 + mn + n2. (5.21)
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Figure 21. Two spheres of E7 × U (1) combined with two E ′
7 × U (1)

spheres. The chiral fields are weighed by qaa + qbb with qa and qb charges
under U (1)a and U (1)b symmetries.

The mixing is given by,

R = R′ − n + m

3
√
n2 + mn + m2

qa − n

3
√
n2 + nm+ m2

qb . (5.22)

There are several cases with enhanced symmetry. Obviously, n =
0 is E7 and m = 0 is E7. Take m = −n and we get E7, m = n get
E6 × SU(2). Note that the square root multiplying the anomalies

can be rewritten in a diagonal basis of fluxes
√
3(m+n

2 )2 + (m−n
2 )2.

From the 6d view point we compactify the E-string on a torus
with flux (−m− n

2 ;
n
4 ,

n
4 ,

n
4 ,

n
4 ,

n
4 ,

n
4 , − 3n

4 , − 3n
4 ) in the overcom-

plete basis and (−m, −m, −m, −m, −m, −m, −m− 2n, −m−
2n) in the complete basis. We now see that,

∑
i

ξi z2i =
(
m+ n

2

)2
+ 3

(n
4

)2
+

(
3n
4

)2

= 1
8
(6m2 + 2(m+ 2n)2) = n2 + nm+ m2. (5.23)

Using this together with (2.15) we recover (5.21).

Combining E 6 × SU (2) × U (1) and E 7 × U (1) to a tube for
SU (8) × U (1)

Using the domain wall picture in section 4, combining the tube
for E6 × SU(2) and the one for E7 we can obtain SU(8) tube. The
resulting theory is drawn in Figure 22.
When we glue two copies of the theory with two punctures to

obtain a torus the superconformal R charges are,

e, b → 1, c, d, o, i → 1
3
, r → 4

3
, h, a, f, l → 2

3
,

n, k, g → 1
2
, j → 5

6
. (5.24)

Figure 22. The SU (8) × U (1) model from tube and half unit of flux. The
superpotentials correspond to faces with one of the vertices being 1,3.
One has here fifteen fields, eight superpotentials, and two gauge nodes.
Together with the rank four symmetry of the two SU (3) symmetries, this
gives rank nine symmetry. When we glue even number of copies to form a
torus one symmetry is broken by anomalies and we are left with rank eight
symmetry.

Figure 23. The SU (8) × U (1) model we get by connecting the two tubes
in Figure 22. Also shown are the charges of the fields summarized using
fugacities. The lines which do not end on boxes or circles correspond to
fundemantal fields of one gauge group.

The anomaly of gluing 2z copies of the model in Figure 22 are,

c = 5z, a = 4z. (5.25)

We can next evaluate the index. The model has two SU(3)
global symmetry groups as well as four non-anomalous U(1)’s.
The model including the charges under the various symmetries
is shown in Figure 23. The index is given by:

I = 1+ 3N3χ [8](pq )
1
2 + 2N2χ [28](pq )

2
3

+ Nχ [56](pq )
5
6 + · · · (5.26)
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where

χ [8] = m
3
2 w6

y
9
2 z

9
4

+ m
3
2 y

3
2

w6z
9
4

+ w2

m
5
2 y

1
2 z

1
4
χ [3, 1]+ m

3
2 y

3
2 z

7
4

w2
χ [1, 3],

N = m
3
2 y

3
2 z

3
4 . (5.27)

Several things are apparent from (5.26). First it indeed forms
characters of SU(8) as expected. Second the operators appearing
in the index are exactly the ones completing SU(8) to E8 (see
the branching rule in Appendix A). Also they all have the same
R-charge as the SU(8) adjoint marginal operators under the 6d
R-symmetry. Finally we note that the number of such operators
is as expected from the formula of [31].
We can write the flux vector associated with this theory. It is

generated from the E6 × SU(2) tube and an E7 tube in a com-
plicated manner. Particularly we consider splitting the 8 flavors
into two pairs of fours and complex conjugating one of the pairs.
This is an inner automorphism from the E7 point of view and
results in a tube that still describe an E7 embedding though a
slightly different one. In the flux basis we have chosen it will be
given by (− 1

2 , − 1
2 , − 1

2 ,− 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) in the complete basis and

(0;− 1
4 , − 1

4 , − 1
4 , − 1

4 ,
1
4 ,

1
4 ,

1
4 ,

1
4 ) in the overcomplete one. Note

that this also reversed the U(1)t charge of four fields.
Now when we combine the two tubes four flavors have the

sameU(1)t charge and are glued using � gluing while the other
four have opposite U(1)t charge and are glued using S gluing.
This results in the tube in Figure 22. It is now straightforward
to write the flux by combining the fluxes of the two tubes paying
special attention to which flavor is connected to which:

Fc = (−1, −1, −1, 0, 0, −1, −1, −1)

+
(

−1
2
,−1

2
, −1

2
, −1

2
,
1
2
,
1
2
,
1
2
,
1
2

)

=
(

−3
2
, −3

2
, −3

2
, −1

2
,
1
2
, −1

2
, −1

2
, −1

2

)
,

Foc =
(

−3
4
;−1

8
, −1

8
, −1

8
,
3
8
,
3
8
, −1

8
, −1

8
, −1

8

)

+
(
0;−1

4
, −1

4
,−1

4
, −1

4
,
1
4
,
1
4
,
1
4
,
1
4

)

=
(

−3
4
;−3

8
, −3

8
, −3

8
,
1
8
,
5
8
,
1
8
,
1
8
,
1
8

)
. (5.28)

The flux of the first three is associate with the SU(3) with the
more flavors while the fifth one is associated with the U(1) with
the least number of flavors.
Alternatively, the flux in the complete basis can be read from

the two domain walls we connected. One is the E6 × SU(2) pre-
serving domain wall and the other is the E7 preserving domain
wall with the flux chosen to be (− 1

2 , − 1
2 ,− 1

2 , − 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ). This

is the required assignment to get the tube in Figure 22. Summing
the fluxes, while taking due of care of how the symmetries are
identified between the two tubes, reproduces (5.28).

6. Closing Punctures

We have discussed theories we can attribute to a sphere with two
punctures. We will now turn to deriving the procedure of clos-
ing a puncture, starting from a theory corresponding to a sur-
face with at least one puncture and some value of flux to obtain
a theory with one puncture less and, possibly, a different value of
flux. In general we can achieve the removal of a puncture by turn-
ing on a vacuum expectation value for an operator charged under
the symmetry associated to the puncture. The natural operators
which are charged under puncture symmetries are the eight op-
eratorsMj we have defined in the previous section. From dealing
with compactifications of M5 branes on orbifolds we know that
the procedure of closing a puncture might also involve adding
chiral fields to the model flipping certain operators. We will pro-
ceed to derive the exact map between removal of punctures and
vacuum expectation values and addition of fields by figuring out
what one has to do in the case of a sphere with two punctures
to obtain a sphere with one puncture. In this case we know the
field theories for which we can trigger the RG flow and know the
anomalies from six dimensional arguments.
We start from the E7 tube with two punctures and half a unit

of flux. Let us discuss this theory at the level of the index as it
encodes very compactly all the fields and charges. The index of
the theory is,

I(z, u) = e (pq t4)

⎛
⎝ 8∏

j=1
e ((q p)

1
2 ta j z±1)e ((q p)

1
2 t

1
a j
u±1)

⎞
⎠

× e

(
1
t2
u±1z±1

)
. (6.1)

We have the contribution of the operators Mj for the two punc-
tures in the brackets on the right hand side. Consider closing
one of the punctures by giving a vacuum expectation value say to
operator Mi . We need to choose which component of the SU(2)
fundamental representation obtains a vacuum expectation value
and with no loss of generality we take,

u = ai

(q p)
1
2 t

. (6.2)

Doing so, and getting rid of the goldstone modes, the index of
the theory in the IR is as follows,

I = e (pq t4)
∏
j �=i

e (ai/a j )
8∏
j=1

e ((q p)
1
2 ta j z±1)e

(
q pt2

1
aia j

)

e

(
(q p)

1
2
z±1

tai

)
e

(
ai z±1

(q p)
1
2 t3

)
. (6.3)

We need to add chiral flips to flip some of the operators.
Otherwise the anomalies will not match the prediction from six
dimensions. We find that flipping the fields with contribution
e (ai/a j ) and e (q pt2 1

a2i
), that is giving themmass but not break-

ing any symmetry does the needed adjustment. All the flipped
operators are components of Mj . The general prescription is
thus to give vacuum expectation value to M+

i (M−
i ) and flip M+

j
(M−

j ) and M−
i (M+

i ). In the theory we consider, Mj are fields and
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flipping them is the same as making them massive, however
in more general theories Mj might be composite operators and
flipping is then performed by adding chiral fields with linear
couplings to the operators.
We claim that the resulting theory is a sphere with a single

puncture and some value of flux. We could have also chosen to
close the other puncture, which differs from the first by its color,
that is the representation under SU(8). The resulting theory can
be generated by acting with complex conjugation on the SU(8)
fugacities but leaving U(1)t unchanged. In the overcomplete
basis we will associate it with the same U(1)t flux but opposite
U(1)ai fluxes.
To figure out the value of the flux we consider taking two

spheres and a collection of free tubes and combine them to form
a sphere with flux. Then by matching anomalies we can infer
the value of the flux for the cups. We find that the anomalies
match, for an arbitrary number of E7 tubes, if we associate the
flux (− 3

4 ;
7
8 ,− 1

8 , − 1
8 , − 1

8 ,− 1
8 , − 1

8 , − 1
8 ,− 1

8 ), where we have con-
veniently set i = 1. Alternatively using the complete basis, the
flux is (1,−1, −1, −1, −1, −1, −1, −1).
From this we conclude the following. Closing a puncture with

sign s and color c by giving a vev to a meson charged under
U(1)ai shifts the flux by: Ft → Ft − s 14 , Fai → Fai − c 78 , Fa j →
Fa j + c 18 , where j �= i and we are using the overcomplete
basis. We have also defined c to be positive when M is in the
fundamental. We note that the two colors that appear in the
E7 tube are not the only ones possible. In the other tubes,
corresponding to fluxes in different U(1)’s, the colors of the two
punctures again differ and not just by complex conjugation. We
can always redefine the SU(8) so that one color be identical to
one of the colors in the E7 tube, but then the other one will differ
from both the colors presented here. When closing one of these
types of punctures we expect the fluxes to be shifted differently.
It may be interesting to understand in more detail what are the
possible colors and how the flux shift is determined by the color.
We shall not pursue this here.

7. Interacting Trinions

We have matched some of the compactifications on genus one
with no punctures and genus zero with less than or equal to two
punctures with four dimensional theories. We will now proceed
to figure out what is the model corresponding to a sphere with
three punctures. Such a model with the two and one punctured
spheres of the previous section will allow us to find field theoret-
ical constructions for compactifications on any surface with any
flux.
We start by considering the anomaly computed in six dimen-

sions for a surface with genus g and some value of flux. The
anomalies for the R symmetry do not depend on the flux so we
consider those. We assume that the surface is to be built from
trinions with � gluing. This allows us to compute anomalies in-
volving R symmetry by decomposing the surface into tubes and
three punctured spheres. The contribution of the� gluing to the
anomaly is given by,

Tr R = 0× 2× 8+ 3 = 3, Tr R3 = 03 × 8× 2+ 3 = 3.
(7.1)

The first terms come from the fields� and the last term from the
SU(2) gluinos. The anomaly of genus g surface is obtained from
six dimensions to give us,

Tr R = (1− g )11 = (2g − 2)(Tr R)tr inion + (3g − 3)(3),

Tr R3 = (g − 1)13 = (2g − 2)(Tr R3)tr inion + (3g − 3)(3). (7.2)

From here we have that (Tr R3)tr inion = 2 and (Tr R)tr inion = −10.
The question is thenwhether we can identify field theories in four
dimensions with such an anomaly.
Serendipitously, we know such models. When one considers

the trinions of compactifications of two M5 branes probing a Z2

singularity one obtains exactly such anomalies. There are an in-
finite number of trinions of that type differing by flux and types
of punctures. However, all of them have the above anomalies in-
volving R symmetries, and these are good candidates to be re-
lated to a trinion of E-string compactification. One can engineer
these models as follows.[8,12] We start with a compactification of
two M5 branes probing Z2 singularity and put these on a sphere
with two maximal, having SU(2)2 symmetry, and two minimal,
having U(1) symmetry, punctures. These four punctured sphere
has a Lagrangian description as an SU(2)2 gauge theory which
happens to be identical to Figure 3 but without the flip fields.
Then one can look at duality frames, geometrically pairs of pants
decompositions, where twoU(1) punctures sit together. We have
a choice of which fluxes we associate to the two pairs of pants
and which color of puncture runs in the tube connecting them
(note that these fluxes and colors are for the compactification of
two M5 branes on Z2 singularity). The theory corresponding to
the pair of pants with the two maximal punctures is a trinion of
that setup with the choices in the decomposition giving rise to
three punctured spheres with different fluxes and colors. A de-
scription in terms of a Lagrangian can be obtained for the trin-
ions by using the duality and exploiting symmetries appearing at
strong coupling of the conformal manifold of the SU(2)2 model.
This procedure of deriving the trinion is analogous to the one de-
riving the trinion, the MN E6 theory,[54] for compactifications of
three M5 branes.[55] The derivation of the Lagrangian is similar
to the derivation of Lagrangian for the E6 MN model.[56]

There is one theory in this list of theories which stands out, and
it was denoted TA in [8] (see also [12]). The construction of the TA
model is described in great detail in [8] and we refer the reader
there for all the properties of this model. Here in Appendix D we
detail the supersymmetric index of (a deformation to be relevant
in what follows) the model from which a Lagrangian description
can be read off. Such a Lagrangian description gives us, for ex-
ample, all the information of the model which does not depend
on the coupling constants. This includes anomalies and super-
symmetric partition functions. The model TA has global symme-
try SU(2)3 × SO(8)×U(1)2. The index of this was computed to
have the form,[8]

I = 1+
(

2
a4t2

+ a4

t2
+ t(2A8v + 2C8c + 2B8s )+ ta42A2C2B

+ 1
a4
28

)
pq + (−28− 3A − 3C − 3B − 1− 1)pq + · · · .

(7.3)
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We have only written terms which are relevant using the super-
conformal R-symmetry. The reason this model is special is that
we can clearly see that there are eight operators in the funda-
mental representation for the three SU(2) symmetries which are
in the various 8 reps of SO(8). We will soon see that a trinion
of the E-string is to be identified with the relevant deformation
of this model switching on the operator with weight a4

t2 and that
the trinion has flux 3

4 for theU(1)t symmetry. The apparent sym-
metry of the theory in addition to symmetries coming from punc-
tures is SO(8)×U(1). The symmetry preserved by each puncture
is SU(8)×U(1), however we have different colors of the punc-
ture (different embeddings of SU(8)×U(1) in E8), as is apparent
from the different representations of the Mi operators, and also
have fractional value of flux. All in all such effects might lead
for the symmetry to be broken to the SO(8)×U(1) we explicitly
see in the index. The precise mechanism of the breaking of he
symmetry should be related to the precise classification and def-
inition of the notion of color and the related center fluxes which
we do not pursue here.11 When the trinions are glued to form
closed Riemann surfaces with integer value of flux we expect the
symmetry to be enhanced to have rank eight. We will denote the
trinion after the relevant deformation as Te . We refer the reader
to Appendix D for more essential details about Te in particular
the expression of the index from which the field theoretic con-
struction can be read of and the anomalies computed.
We can compare the anomalies of Te theory with the anomalies

from the 6d E-string theory compactified on a three punctured
sphere. As discussed in section 2.6, the 4d anomaly from the 6d
theory is obtained by the sum of geometric and inflow contribu-
tions. Regarding the flux 3

4 for the U(1)t symmetry, we compute
the anomalies of three punctured sphere as

Tr (U(1)3R) =
(
13
2

)
geo

+ 3×
(

−3
2

)
inf

= 2,

Tr (U(1)R) =
(

−11
2

)
geo

+ 3×
(

−3
2

)
inf

= −10,

Tr (U(1)3F ) = (9)geo + 3×(−1)inf = 6,

Tr (U(1)F ) = (9)geo + 3×(−4)inf = −3,
Tr (U(1)2FU(1)R) = (−2)geo = −2,
Tr (U(1)FU(1)2R) = (−3)geo = −3. (7.4)

These results are in perfect agreement with the anomalies of Te
theory, where U(1)F = − 1

2U(1)t .
Let us consider combining 2g − 2 theories Te with the S – glu-

ing to form closed Riemann surfaces. As we are using the S –
gluing with even number of trinions the flux of this model is
vanishing. Computing the index we obtain that it is given by the
following for general genus g ,

I = 1+ (248(g − 1)+ 3g − 3)q p + · · · . (7.5)

11 See [8] for similar issues when considering compactifications of two
M5 branes on Z2 singularity.

Such an index is precisely what we expect for the conformal man-
ifold of a theory with vanishing flux. The first term at order q p is
given by the flat connections of E8 and the second by the com-
plex structuremoduli. As we see only a sub-group of E8 explicitly,
U(1)× SO(8), let us write down the decomposition of E8,

248 = 1+ 1
t4

+ t4 +
(
2t2 + 1+ 2

t2

)
28+ 35V + 35S + 35C.

(7.6)

This identifies the SO(8) embedding as the SO(8) ⊂ SU(8) ⊂
E8. Let us note that the index computation of a theory correspond-
ing to genus g is independent of the pairs-of-pants decomposi-
tion of the surface, at least to the order we have computed it. This
is consistent with the different decompositions corresponding to
different duality frames.
We can combine the trinions with � gluing to form a genus

g Riemann surface. The anomaly polynomial can be easily ob-
tained for this model. The symmetry that we see is SO(8)×U(1)
and we parametrize the trial R symmetry as R = R′ + sq with R′

the six dimensional R symmetry and q the charge under flavor
U(1). Then we obtain that the trial anomalies are,

a(s ) = 3
16
(1− g )

(
1728s 3 + 288s 2 − 144s − 25

)
,

c(s ) = 1
8
(1− g )

(
2592s 3 + 432s 2 − 252s − 43

)
. (7.7)

This matches the computation in six dimensions if we associate
the theory Te with sphere with three punctures and flux 3

4 for the
U(1) symmetry. We also then expect that the genus g theory will
have E7 ×U(1) symmetry.
We can check the flux assignment and the symmetry by com-

puting the index. We expect the full symmetry to be there for odd
genus as the flux then will be integer. For example computing
the index of genus three surface we glue four Te models together
with � gluing, which adds to flux 3, we obtain,

Ig=3 = 1+
(
8
t4

+ 556
t2

)
pq + 2(133+ 1+ 3)q p

+ (−4t4 − 56t2)pq + · · · . (7.8)

We have written terms up to order q p in six dimensional R sym-
metry. The first terms are relevant operators, second marginal,
and third irrelevant, when the mixing with theU(1) is taken into
account. The value of s which extremizes the a anomaly here
is

√
10−1
9 and hence operators which are marginal in six dimen-

sional R symmetry and have positive U(1) charge become irrele-
vant, and with negative charge become relevant. The number of
marginal, relevant, and irrelevant operators are given by a geo-
metric formula[31] (see Appendix E for some more details). The
marginal (minus the conserved currents) are,

(dimG + 3)(g − 1) → (133+ 1+ 3)2. (7.9)

The relevants are given by (see [31]) the split of 248 adjoint
representation to E7 × SU(2) representations keeping only the
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negative charge components and weighing them properly with
flux and genus. The decomposition is

248 =
(
t2 + 1

t2

)
56+ 1+ 1

t4
+ t4 + 133. (7.10)

Then the number of relevant deformations is taking F as flux,

1
t2
56(g − 1+ F)+ 1

t4
(g − 1+ 2F) → 556

t2
+ 8

t4
. (7.11)

The index contribution of the irrelevant deformations is obtained
in the sameway (see [31]) keeping only the operators with positive
charges,

t256(g − 1− F)+ t4(g − 1− 2F) → −56t2 − 4t4. (7.12)

The negative sign is to be interpreted as fermionic operators. This
indeed matches the numbers appearing in the computation of
the index.
We can study in detail the different genera theories and always

we find consistent results. Another check that one can perform
is to combine the tubes that we have found with the trinions to
obtain theories of various flux. If we combine 2g − 2 Te models
and n E7 tubes we obtain a theory of flux 3g−3−n

2 (flux of tube is
− 1

2 ). Note that n can be also negative as we can flip the sign of
the tube. The anomaly polynomials can be computed to give,

a(s ) = g
(

−324s 3 − 54s 2 + 27s + 75
16

)
+ 108(n + 3)s 3

− 9(n + 3)s + 54s 2 − 75
16

,

c(s ) = 1
8

(
g

(−2592s 3 − 432s 2 + 252s + 43
) + 864(n + 3)s 3

− 84(n + 3)s + 432s 2 − 43
)
. (7.13)

This matches the computation in six dimensions. As another test
of this expressions let us take n = 3g − 3. This gives flux to be
vanishing, that means that the symmetry should be E8 and the
U(1) should not be mixing with the R symmetry. Plugging this
value into the above expression we obtain that the trial anomaly
is,

a(s ) = 3
16
(1− g )

(
288s 2 − 25

)
. (7.14)

This is extremized with vanishing s as expected. The anomalies
of theory with no flux are then (c, a) = ( 438 (g − 1), 75

16 (g − 1)) as
expected. Let us also write down the conformal anomalies for the
generic case,

a =

1
432

(
48n(6g−n−6)

(√−6(g−1)n + 10(g−1)2 + n2 − g + 1
)

(−3g + n + 3)2

+ 480
√

−6(g − 1)n + 10(g − 1)2 + n2 + 1329g − 1329

)
,

c =

1
216

(
24n(6g−n−6)

(√−6(g−1)n + 10(g−1)2 + n2−g+1
)

(−3g + n + 3)2

+ 294
√

−6(g − 1)n + 10(g − 1)2 + n2 + 759g − 759

)
. (7.15)

7.1. Theories with Punctures

Let us discuss theories with punctures. In particular we can dis-
cuss the conformal manifold and anomalies. The anomalies will
work out almost automatically after we have verified these for
surfaces with no punctures and verified the right procedure to
gauge symmetries coming from punctures. In presence of punc-
tures the global symmetry Gmax preserved by the flux is typi-
cally broken to a subgroup. The punctures preserve symmetry
Pj = SU(8)×U(1). The symmetry preserved by the theory is
then

Gmax ∩ P1 ∩ · · · ∩ Ps , (7.16)

where we have s punctures. Although each puncture preserves
SU(8)×U(1), it can be embedded differently inside E8. The dif-
ferent choices as we mentioned before will be referred as colors
of a puncture. The dimension of the conformal manifold is ex-
pected to be given by[8] the general expression,

dimM = 3g − 3+ s + dimGmax

(
g − 1+ s

2

)

−
s∑
j=1

dim(Gmax ∩ Pj )+ L . (7.17)

Here L is number of abelian factors inGmax. We can compute in-
dices of theories with punctures and arbitrary Riemann surface.
Combining 2g − 2+ s Te models to obtain genus g model with
s punctures we find that at order q p the index is,

(
g − 1+ s

2

)
(133+ 1)+ 3g − 3+ s − s

2
(63+ 1). (7.18)

Here 63+ 1 is the dimension of SU(8)×U(1), symmetry pre-
served by the puncture. In particular this symmetry is a subgroup
of E7 ×U(1) symmetry of Te . This is consistent with the general
expression.
In similar way combining Te models using S-gluing to obtain

theories corresponding to zero flux, we obtain that at order q p
the index is,

3g − 3+ s + 248
(
g − 1+ s

2

)
− s
2
(63+ 1). (7.19)

Which is consistent with what we expect. One can performmore
checks of the higher genus models with punctures, for example
glue in tubes with different symmetries/fluxes. As far as we have
checked one always lands on their feet regarding the expectations
we have discussed here. We stress once again that punctures
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deserve a more thorough treatment than given here and we leave
this for future work.

8. Summary and Comments

In this paper we have charted a map between field theoretic con-
structions in four dimensions and compactifications of rank one
E string theory. This allowed us to conjecture, and provide evi-
dence for, simple quiver gauge theories with the IR symmetry
group being larger, often much larger, than the symmetry ob-
served in the UV description. For genus higher than one the
field theoretic construction requires introduction of the Te model
which is non-Lagrangian in the usual sense. It can be constructed
as a deformation of a model one obtains by gauging a symmetry
only appearing at strong coupling on the conformal manifold of
some Lagrangian construction. The map between the geometric
compactification and the field theoretic constructions has passed
numerous checks. These include the systematic treatment of en-
hanced symmetry and also the dualities between different field
theoretic constructions.
There are several observations worth mentioning. First, we

have found that there are numerous relations between models
one finds studying E-string compactifications and models ob-
tained compactifying M5 branes probing A type singularity. For
example, E string on a torus with zunits of flux breaking the sym-
metry to E7 ×U(1) is related to four punctured sphere compacti-
fications of twoM5 branes probingZ2z singularity. The theory we
found to come from three punctured sphere in E-string comapc-
tification is a deformation of a theory coming from three punc-
tured sphere for two M5 branes on Z2 singularity. The relations
between the two compactifications require either deformations
by relevant operators or by introduction of gauge singlet fields. It
is not surprising that different compactifications lead to similar
SCFTs, however the relations in our case are ubiquitous and it
would be interesting to understand them.
One can discuss various generalizations of the construction

discussed here. For example, we can study higher rank versions
of the E-string theory. Such models can be engineered by study-
ing more than one M5 brane on D4 singularity. We discuss some
of the more simple generalizations in this direction in Appendix
B. For example, we argue that deformations of compactifications
on torus with flux are obtained by changing the SU(2) gauge
groups appearing in rank one with USp(2Q) gauge groups and
additional fields in the antisymmetric representation. However,
we lack important parts of the story here, for example the field
theoretic construction of the three punctured spheres and the
simple arguments in five dimensions. It will be interesting to
study this generalization in detail.
We can consider generalizations to various (1, 0) starting

points. This paper has given evidence that the predictions com-
ing from 6d , even for an exotic theory such as E-string theory, are
indeed satisfied and thus we have a vast class of N = 1 SCFT’s
in front of us. We emphasize that the six dimensional predic-
tions are rather straightforward and robust once the symmetry
and anomalies of the six dimensional starting point are known.
The challenge is to find a corresponding construction in four di-
mensions. At least when the five dimensional version of the six
dimensional model has Lagrangian domain wall constructions

we believe that our methods can provide for a systematic way of
building four dimensional models corresponding to torus com-
pactifications with flux and spheres with less than three punc-
tures. We will report on this in an upcoming work.[57]

Finally, let us mention that the relations between six dimen-
sions and four coming from compactifications often lead to deep
interplay between four and two dimensional physics. It will be
very interesting to understand this better here. For example, the
supersymmetric index in four dimensions of a given model can
be viewed as as a TFT correlator on the Riemann surface leading
to that particular model.[58–60] It will be interesting to understand
the details of such a TFT in our case and its relation to surface
defects[61] in the four dimensional models and to integrable mod-
els (for example the eight parameter elliptic relativistic general-
ization of the Heun equation[62–64]).12

Appendix A: Branching Rules

In this appendix we summarize some branching rules that are
useful in the study of compatification of E-string with flux.

A.1. E 8 → U (1) × G

G = E7

248 → 1±2 ⊕ 10 ⊕ 1330 ⊕ 56±1 (A.1)

G = SO(14)

248 → 10 ⊕ 910 ⊕ 14±2 ⊕ 64−1 ⊕ 64
1

(A.2)

G = SU(2)× E6

248 → (1, 1)0 ⊕ (3, 1)0 ⊕ (1, 78)0 ⊕ (1, 27)2 ⊕ (1, 27)−2

⊕ (2, 27)−1 ⊕ (2, 27)1 ⊕ (2, 1)±3 (A.3)

G = SU(8)

248 → 10 ⊕ 630 ⊕ 83 ⊕ 8
−3 ⊕ 28−2 ⊕ 28

2 ⊕ 561 ⊕ 56
−1

(A.4)

G = SU(3)× SO(10)

248 → (1, 1)0 ⊕ (8, 1)0 ⊕ (1, 45)0 ⊕ (3, 1)−4 ⊕ (3, 1)4 ⊕ (3, 10)2

⊕ (3, 10)−2 ⊕ (1, 16)3 ⊕ (3, 16)−1 ⊕ (1, 16)−3 ⊕ (3, 16)1

(A.5)

G = SU(2)× SU(7)

248 → (1, 1)0 ⊕ (3, 1)0 ⊕ (1, 48)0 ⊕ (2, 7)3 ⊕ (2, 7)−3 ⊕ (1, 7)−4

⊕ (1, 7)4 ⊕ (2, 21)−1 ⊕ (1, 35)2 ⊕ (2, 21)1 ⊕ (1, 35)−2

(A.6)

12 We thank S. Ruijsenaars for discussions of these matters.
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G = SU(4)× SU(5)

248 → (1, 1)0 ⊕ (15, 1)0 ⊕ (1, 24)0 ⊕ (4, 1)5 ⊕ (4, 1)−5 ⊕ (4, 5)−3

⊕ (4, 5)3 ⊕ (6, 5)2 ⊕ (6, 5)−2 ⊕ (4, 10)1 ⊕ (1, 10)−4

⊕ (4, 10)−1 ⊕ (1, 10)4 (A.7)

G = SU(2)× SU(3)× SU(5)

248 → (1, 1, 1)0 ⊕ (3, 1, 1)0 ⊕ (1, 8, 1)0 ⊕ (1, 1, 24)0 ⊕ (2, 3, 1)−5

⊕ (2, 3, 1)5 ⊕ (2, 3, 5)1 ⊕ (2, 3, 5)−1 ⊕ (2, 1, 10)−3

⊕ (2, 1, 10)3 ⊕ (1, 1, 5)6 ⊕ (1, 1, 5)−6 ⊕ (1, 3, 5)−4

⊕ (1, 3, 5)4 ⊕ (1, 3, 10)2 ⊕ (1, 3, 10)−2 (A.8)

A.2. E 8 → U (1)2 × G

G = E6

248 → 21(0,0) ⊕ 1(±2,0) ⊕ 78(0,0) ⊕ 27(0,2) ⊕ 27
(0,−2) ⊕ 27(±1,−1)

⊕ 27
(±1,1) ⊕ 1(±1,±3) (A.9)

The two U(1)′s are spanned by (a, b) where flux only in a
breaks E8 to U(1)× E7 and flux only in b breaks E8 to U(1)×
SU(2)× E6. Furthermore, flux where a = ±b preserves a differ-
ent E7 ⊂ E8 and a = ±3b preserves a different SU(2)× E6 ⊂
E8.

G = SO(12)

248 → 21(0,0) ⊕ 1(±2,0) ⊕ 1(0,±2) ⊕ 66(0,0) ⊕ 32(0,±1) ⊕ 32′(±1,0)

⊕ 12(±1,±1) (A.10)

The two U(1)′s are spanned by (a, b) where flux only in either
of them breaks E8 toU(1)× E7. Furthermore, flux where a = ±b
preserves an SO(14) ⊂ E8.

G = SU(2)× SO(10)

248 → 2(1, 1)(0,0) ⊕ (1, 1)(0,±2) ⊕ (3, 1)(0,0) ⊕ (1, 45)(0,0)

⊕ (2, 10)(0,±1) ⊕ (2, 1)(±2,±1) ⊕ (1, 10)(±2,0) ⊕ (1, 16)(−1,±1)

⊕ (2, 16)(−1,0) ⊕ (1, 16)(1,±1) ⊕ (2, 16)(1,0) (A.11)

The twoU(1)′s are spanned by (a, b) where flux only in a breaks
E8 to U(1)× SO(14) and flux only in b breaks E8 to U(1)× E7.
Furthermore, flux where a = ±b preserves an SU(2)× E6 ⊂ E8

while flux where 2a = ±b preserves an SU(3)× SO(10) ⊂ E8.

Appendix B: Higher Rank

We can consider the generalization of the discussion to higher
rank E string models. In five dimensions, that is taking the E

Figure B.1. Example of U Sp(2Q) quiver theory corresponding to defor-
mation of compactification of rank Q E string on a torus with two units of
flux. Each node has an antisymmetric tensor which couples to bilinears of
bifundamentals with a cubic coupling.

string on a circle, the higher rank model becomes USp(2Q)
gauge theory with an antisymmetric hypermultiplet and eight hy-
permultiplets in the fundamental representation. The symmetry
is SU(8)×U(1)× SU(2) with the SU(2) rotating the half- hyper-
multiplets of the antisymmetric field. A simple conjecture follow-
ing fromfive dimensions is that we need just to change the SU(2)
groups we have obtained for rank one with USp(2Q). Moreover
it is natural to add a field in the antisymmetric representation.
Consider the case of the compactification with flux breaking

the E8 to E7 ×U(1). We just have the same quiver diagram as in
Figure 3 just change the gauge groups to USp(2Q) and add the
antisymmetric fields, see Figure B.1. The gauge groups here have
zero one loop beta function. We couple the antisymmetric field
to bilinears of bifundamental chirals which also are coupled to
singlet flippers. The model has manifest SU(8)×U(1) which at
the level of te index again can be seen to enhance to U(1)× E7.
However, there is no SU(2) symmetry which we expect to have
for higher rank.
There is a way to connect this model to six dimensions. For

simpicity we consider the case with twoUSp(2Q) gauge groups.
The other cases work in a similar manner. Let us write the
trial anomaly polynomial of this theory with the R symmetry
natural from six dimensions. We assign R charge 0 to the bi-
fundamentals, R charge +1 to the fundamentals charged un-
der SU(8), and R charge +2 to the antisymmetrics. The U(1)
charge of the antisymmetrics is +1, of the bifundamentals
− 1

2 , of the fundamentals + 1
4 . The anomalies are then defining

R = R′ + s F

a = 9
64

s Q
(
s 2(6Q − 3)+ 12s (Q − 1)− 16

)
,

c = 3
64

s Q
(
9s 2(2Q − 1)+ 36s (Q − 1)− 56

)
. (B.1)

This matches the six dimensional result (2.12) when we set
h = 2s + 2. Such a specialization means that we turn on a defor-
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Figure B.2. Theory corresponding to unit of flux and E6 × SU (2) symme-
try for rank Q E-string on a torus. The fields X are the antisymmetric fields
for each gauge group. These fields couple to the bifundamental fields ac-
cording to their U (1)a and U (1)b charges.

mation of the four dimensional theory corresponding to the com-
pactification breaking SU(2) symmetry and locking the R sym-
metry with the Cartan of the SU(2) and theU(1) in a certain way.
We conclude that the theory we obtain here is a deformation of
the theory one obtains in a compactification, breaking the SU(2)
but having E7 ×U(1). The conformal R-charge here is the free
one and the anomaly is given after extremization by

a = Q(Q + 1), c = Q
(
Q + 3

2

)
. (B.2)

B.1. Theories with G × U (1)

We can construct, in a similar manner to the above, theories pre-
serving other groups by replacing the SU(2) gauge groups with
USp(2Q). In each case the four dimensional theory can be ar-
gued to be related to a deformation of a compactification of the
six dimensional theory.
We here consider an example of a theory with G = E6 ×

SU(2). See Figure B.2 for the quiver theory. Thismodel hasmani-
festly SU(6)× SU(2)×U(1)a ×U(1)b symmetry. The symmetry
SU(6)× SU(2)×U(1) a

4 − b
2
enhances to E6 × SU(2). Let us de-

note U(1)s such that qs = 1
2qa + 1

4qb . Then the anomaly polyno-
mials are given here,

a = 9
64

s Q
(
s 2(6Q − 3)+ 12s (Q − 1)− 16

)
,

c = 3
64

s Q(−56+ 36s (Q − 1)+ 9s 2(−2Q − 1)). (B.3)

This matches the six dimensional result (2.12) when we set
h = 3s + 2 and ξ = 3.
It will be interesting to discover field theory constructions hav-

ing the full rank nine symmetry of the six dimensional model
and also to generalize field theory constructions to higher genus.
We hope to return to this questions in future studies.

Appendix C: Flux Quantization

In this appendix we consider the possible choices for fluxes in the
compactification of a 6d theory on a Riemann surface �. When
compactifying the 6d theory with a flux in some U(1) subgroup
of the full global symmetry group, the flux must be quantize∫

�
C1(U(1)) = cn where n is an integer, and c is some normal-

ization dependent constant. This quantization condition is analo-
gous to theDirac quantization condition formagneticmonopoles
and it is sometimes convenient to think about it in this way to get
a physical picture.
Specifically this means that the flux must be quantize such

that for every state the phase factor e2π iq
∫
� C1(U(1)), where q is the

charge of the state under theU(1), is equal to 1. This means that
we must take c = 1

qmin
where qmin is the minimal charge in the

system. This is indeed just the well known Dirac quantization
condition. This means that flux quantization is dependent on
the 6d spectrum. Particularly if the U(1) is part of a non-abelian
group G then the minimal charges present depend on what rep-
resentations of G appear in the 6d theory. For instance for the
U(1) Cartan of SU(2) the minimal charge is in the doublet, and
normalizing its charge to one the fluxes will be integer. How-
ever if that is not present in the 6d spectrum then half-integer
fluxes are also consistent as all states will have even charge in this
normalization. In other words, flux quantization depends on the
global structure of the group and not just the local one, for in-
stance SU(2) versus SO(3) = SU(2)/Z2.
In this paper we dealt mostly with E8 which does not have a

center, so we will concentrate on the case where the 6d global
symmetry group is simply connected. Later, for completeness, we
shall mention some additional choices that exist when the group
is not simply connected. Even in this case flux quantization can
become involved. For instance consider the case when there is
flux in several U(1)’s. The condition now becomes:

e2π i
∑

i qi
∫
� C1(U(1)i ) = 1, (C.1)

and one can envision situations when each term individually will
not obey the condition, but their sumwill. Note however, that this
must occur for every state in the 6d theory. Thus there must be
some combined transformation of theU(1)’s that acts trivially on
all states. In other words the full symmetry group is not just the
direct product of all theU(1) butU(1)×U(1) · · ·U(1)/Zwhere Z
is some discrete group. This modding out expresses the fact that
there is some combined transformation that acts trivially and so
needs to be modded out.
This can also occur when the fluxes are not just in a U(1) but

also in the center of a non-abelian group. For instance consider
the case when the global symmetry is locally U(1)× SU(2) and
the spectrum is generated by the two states 3±2 and 2±1. Themin-
imal charge under theU(1) here is 1 and so we expect the flux to
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be integer in this normalization. However we can also have half-
integer flux if we also turn on a flux in the center of the SU(2).
Recall that the center of SU(2) is Z2 whose non-trivial element
acts as: 2 → −2, 3 → 3. Thus the 3±2 is consistent since it has
even charge while 2±1 will get a −1 both from the U(1) flux and
from the center whichwill cancel exactly. This is again sincewhile
locally the group is U(1)× SU(2), globally it is actually U(1)×SU(2)

Z2

where the Z2 is the combined U(1) π i transformation and the
center of SU(2).
In fact such structures are ubiquitous when one starts with a

simply connected group G and break it to a subgroupU(1)× G′

via flux. Generically the commutant in G is not U(1)× G′ but
U(1)×G′

Z for some discrete group Z. In these cases one can accom-
modate non-integer fluxes (where we have chosen a basis so that
the minimal charge is 1) if combined with a flux in the center
of G′. The flux can be generated by two holonomies that do not
commute up to an element of the center. Mathematically, it is
referred to as a nonzero Stiefel-Whitney class for the global sym-
metry bundle G′

Z . These center fluxes, specifically the holonomies
needed to generate them, break some part of G′ as we shall now
discuss.

C.1. Center Fluxes

As we mentioned we can also incorporate a flux in the center of a
non-abelian group. This can be realized by turning on two almost
commuting holonomies, that is two holonomies that commute
up to an element of the center. For example consider the group
SU(2) and the two following holonomies:

A =
(
i 0
0 −i

)
, B =

(
0 i
i 0

)
. (C.2)

These holonomies obey: AB = −AB, so they commute up to the
center −I element of SU(2). Putting these two elements on the
two cycles of a torus for instance generate a flux in the Z2 center
of SU(2).
Now several points are worth noticing. Generically the

holonomies on a Riemann surface are not independent as they
must obey the fundamental group condition. For the torus this
condition is that the two holonomies must commute13. Thus we
cannot turn on flux in a non-abelian group just by turning on two
constant but non-cummuting holonomies. Here again it is im-
portant that the group is not U(1)× G′ but U(1)×G′

Z . For instance
the two holonomies (C.2) do not commute in SU(2) but they do
commute in SO(3), and thus are valid holonomies in that case.
In all of these cases the holonomies are valid ones for the actual
group even though they are not valid in the universal cover.
A second observation is that the holonomies generically break

part of the symmetry. To illustrate this we again refer to the two
holonomies (C.2). In their presence we preserve only the part of
SU(2) that commute with them14. In this case one can show that
this breaks SU(2) completely.

13 For higher genus Riemann surfaces these generalize to the condi-
tion:

∏g
i=0[Ai , Bi ] = 1, where Ai , Bi are the holonomies under the 2g

cycles.
14 This is usually refereed to as the centralizer of the elements in G.

C.2. Non-Simply Connected Groups

We now want to say a few words about what happens when the
6d global symmetry groupG is not simply connected. First, more
charges will be consistent compared to the case involving the uni-
versal cover. We do note that in some cases the difference may
be quite subtle. For instance consider the case of USp(4) versus
USp(4)

Z2
= SO(5), and flux in the U(1) whose commutant is SU(2)

breaking 4 → 2±1, 5 → 1±2 + 3±0. In both cases a half-integer
flux is possible, but in the USp(4) case this must be accommo-
dated by a center flux in the SU(2). Therefore, the difference be-
tween the two cases appears not in the possible choices of flux
but in the global symmetry preserved by the flux.
Besides the difference in quantization and global symmetry,

we also have the possibility of turning on flux in the universal
cover group via almost commuting holonomies. As mentioned
in the previous subsection we cannot turn on non-commuting
holonomies on the torus, but we can turn on two holonomies
that commute in G yet do not commute in the universal cover.
This means that we apply the same procedure as in the previous
subsection but now to the full groupG. As previouslymentioned,
this is known in the mathematical literature as turning on a non-
trivial Stiefel-Whitney class. These are discrete elements whose
values are given byπ1(G), which are just the elements up towhich
the two holonomies commute. Turning on such elements has ap-
peared in the context of the compactification of a 6d SCFT with
non-simply connected global symmetry in [16].
As we previously discussed, a non-trivial Stiefel-Whitney class

generically breaks G. An interesting problem then is to deter-
mine what is the centralizer for each possible choice. This prob-
lem is rather involved yet was studied by a variety of people from
both the physics and mathematics viewpoint.[65–71] We shall now
describe some aspects of this issue.

C.3. Global Symmetry Preserved by Center Fluxes

We start with several general observations. The most impor-
tant of these is that the global symmetry preserved depends
on the choice of holonomies. However, there is a particular
choice preserving the maximal global symmetry G′, given by say
holonomies A and B, where all other choices can be generated by
holonomies At and Bt ′ where t, t ′ belong to the maximal torus
of G′. Note that while the various possible centralizer groups are
subgroups of G they may not be subgroups of one another.
The point in this structure is that when we turn on central

fluxes we are forced to turn on holonomies, but have some free-
dom in their exact form. From the form of the holonomies it is
clear that for generic choices of t, t ′ we break G′ to U(1)r where
r is the rank of G′. This follows as the holonomies must com-
mute up to the center. For special choices of t, t ′ the symmetry
U(1)r enhances to various non-abelian groups. Since the maxi-
mal torus is connected, and as any holonomies that commute up
to a specific center element can be written in that form, we can
continuously move from any chosen pair to any other one.
The implications of this on the 4d theories resulting from such

compactifications are as follows. The parameters associated with
tuning holonomies are generically mapped to marginal deforma-
tions in 4d, and the space of holonomies then is mapped to part

Fortschr. Phys. 2018, 66, 1700074 C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1700074 (30 of 35)

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

of the conformal manifold of the theory. Thus, we expect the the-
ory to contain an r dimensional conformal manifold where at a
generic point of which the symmetry is broken to U(1)r , but is
enhanced to various non-abelian symmetries, particularly G′, for
special points on the conformal manifold.
A list with the possible values of G′ appears in [68]. We shall

next discuss these possibilities for various choices of G. We shall
not classify all possible non-abelian groups one can get, but in-
stead discuss ones that are of interest here.

SU (N)

The case of SU(N) is probably the most well known. The center
of SU(N) is ZN and we can choose a pair that commute up to the
element ωl where ω is the generator of ZN . This can be realized
by the matrices:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ik×k 0 0 · · · 0
0 ωl Ik×k 0 · · · 0
0 0 ω2l Ik×k · · · 0
.

.

.

0 0 0 · · · ω
(N−k)l

k Ik×k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Ik×k 0 · · · 0
0 0 Ik×k · · · 0
.

.

.

0 0 0 · · · Ik×k

Ik×k 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C.3)

where k = gcd(N, l ) and we have used Ik×k for a k × k identity
matrix. These matrices also appeared in [72].
These preserve an SU(gcd(N, l )) subgroup of SU(N). In this

case this is the maximal group we can get.

U Sp(2N)

The center ofUSp(2N) is Z2 which acts non-trivially on the fun-
damental representation. Recall that USp(2N) is defined as the
matrices M obeying:

M†M = I2N×2N, MT J2N×2NM = J2N×2N, (C.4)

where

J2N×2N =
(

0 IN×N

−IN×N 0

)
. (C.5)

This choice of presentation highlights the SU(2)× SO(N) sub-
group of USp(2N), and we can now choose the following pair:

A =
(
i IN×N 0
0 −i IN×N

)
, B =

(
0 i IN×N

i IN×N 0

)
. (C.6)

These break the SU(2), but preserve the SO(N). This choice
is available for any N, but when N is even there is another

choice that preserves a larger group. Consider the presentation
highlighting the SO(2)×USp(N) subgroup ofUSp(2N), where
we represent J2N×2N by:

J2N×2N =
(
JN×N 0
0 JN×N

)
. (C.7)

In this presentation we can choose the holonomies:

A =
(
IN×N 0
0 −IN×N

)
, B =

(
0 IN×N

IN×N 0

)
. (C.8)

These preserve USp(N) which is the largest group one can pre-
serve when N is even.
Besides these there are various other groups one can preserve.

Spi n(2N + 1)

The center of Spin(2N + 1) is Z2 where
Spin(2N+1)

Z2
= SO(2N +

1) so this element acts non-trivially on the spinors. For the
case of Spin(3) = SU(2) we have already presented a pair com-
muting up to its center. In the general case we can now use
the breaking Spin(2N + 1) → Spin(3)× Spin(2N − 2) and em-
bed the same holonomies inside Spin(3). Since the spinor
decomposes to bispinors this will have the desired effect.
This breaks Spin(3) but preserves Spin(2N − 2). It turns out
that in this case one can actually preserve a larger group
Spin(2N − 1).[68] Note that the ranks of the two groups are the
same so there is no contradiction with the structure of the
holonomy space. We can understand how this comes about
as follows. Consider the breaking of Spin(2N + 1) → U(1)×
Spin(2N − 1). Under it the spinor of Spin(2N + 1) decom-
poses to two spinors of Spin(2N − 1). So we can represent the
Spin(2N + 1) spinor as a two component vector of Spin(2N − 1)
spinors. Now consider the following holonomies acting on this
vector:

A = a
(
I2N−1×2N−1 0

0 −I2N−1×2N−1

)
,

B = b
(

0 I2N−1×2N−1
I2N−1×2N−1 0

)
. (C.9)

These commute up to the center of Spin(2N + 1), where a, b
are some constants chosen so that thematrices A, B sit in the ap-
propriate group. These holonomies break the U(1), but preserve
Spin(2N − 1).

Spi n(2N)

The center of Spin(2N) differs depending on whether N is even
or odd. In the N even case it is Z2 × Z2 while in the N odd case
it is Z4. The generator of Z4 in the N odd case, ω̃, acts as i on the
spinors and −1 on the vectors. Thus we have two distinct center
choices ω̃, and ω̃2 where the latter is the element that projects
Spin to SO. In the N even case the generators of Z2 × Z2, ω1 and
ω2, act as−1 on the vector and one of the spinors. Thus again we
have two distinct center choices, ω1 and ω1ω2 where the latter is
the element that projects Spin to SO.
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Let us consider the element projecting Spin to SO, which
can be discussed uniformly in the same manner as the
Spin(2N + 1) case. Particularly, we consider the break-
ing Spin(2N) → Spin(3)× Spin(2N − 3) and embed the
holonomies in Spin(3) = SU(2). This achieves the desired result
while breaking the SU(2) but preserving Spin(2N − 3). This
is the largest global symmetry one can preserve in this case.
Particularly we cannot preserve Spin(2N − 2).
To see this we again consider the breaking of now Spin(2N) →

U(1)× Spin(2N − 2). Under it the spinor of Spin(2N) decom-
poses to two spinors of Spin(2N − 2), but now these spinors
are in different spinor representations of Spin(2N − 2). We can
again represent the Spin(2N) spinor as a two component vector
of Spin(2N − 2) spinors, but now the two components are in dif-
ferent spinor representations. These requires us to modify the
holonomies to:

A = a
(
I2N−2×2N−2 0

0 −I2N−2×2N−2

)
, B =

(
0 V
V 0

)
. (C.10)

Here we introduce the operator V which maps one spinor rep-
resentation to the other, and retains the constant a chosen so
that the matrices A sit in the appropriate group. The operator
V can be naturally associated with a vector of Spin(2N − 2), as
these are the non-diagonal element that appear in the adjoint de-
composition of Spin(2N) and can indeed introduce the required
mapping.
The holonomies (C.10) commute up to the center of Spin(2N),

and break theU(1) part. However we cannot preserve Spin(2N −
2) as we need to also choose a specific V . As it can be identi-
fied with a vector of Spin(2N − 2), it will generically break it to
Spin(2N − 3). More generally we can just think of the matrix
B as implementing the outer automorphism of Spin(2N − 2),
as it exchanges the two spinor representations. This preserves
the subgroup of Spin(2N − 2) that is invariant under this outer
automorphism. The largest group that can be preserved is in-
deed Spin(2N − 3), however, by choosing a different represen-
tation of this element we can preserve different groups. Partic-
ularly it follows from the work of Kac (see section 3.3 in [73]
for a discussion on this aimed for physicists) that one can pre-
serve in this way the group Spin(2k + 1)× Spin(2N − 2k − 3)
for k = 0, 1, 2 . . . , N − 2.
So to conclude we see that the largest group we can pre-

serve here is Spin(2N − 3), but other choices exist for instance
there are choices preserving Spin(2k + 1)× Spin(2N − 2k − 3)
for k = 1, 2 . . . , N − 3. Note that these in general are not sub-
groups of one another.
We can next consider the case of N even and center choice

ω1. This case was studied extensively in [67], which analyzed
the various choices. The maximal symmetry one can preserve
here isUSp(N). This can be seen by using the SU(2)×USp(N)
subgroup of Spin(2N) and again embed the holonomies in
the SU(2). There are other choices, involving other subgroups
that can be used, preserving different symmetries. Using these
choices one can preserve a USp(2k)× Spin(N − 2k) for any
k = 0, 1, . . . , N

2 .
In the N odd case we can consider the center choice ω̃. In

this case the maximal symmetry we can preserve is Spin(N − 2).
There are however other choices. For instances there is one pre-
serving USp(N − 3).[65]

E 6

The center of E6 is Z3, and we can choose a pair of holonomies
commuting up to the generator of Z3 or its inverse. Either way
the maximal subgroup one can preserve is G2.

E 7

The center of E7 isZ2 which acts non-trivially on the fundamental
56 dimensional representation of E7. It is known that the maxi-
mal subgroup that can be preserved is F4.
There are other possible choices, and we shall analyze an-

other case which appears in our discussion. In it we utilize the
SU(8) subgroup of E7. Under the embedded SU(8) the fun-
damental of E7 decomposes as 56 → 28+ 28 and the adjoint
as 133 → 63+ 70, where we note that the 28, 70 and 63 are
the rank 2 antisymmetric, rank 4 antisymmetric and adjoint
of SU(8) respectively. Thus we can introduce the vector V and
matrix M:

V =
(
F
F

)
, M =

(
A �

� A

)
, (C.11)

where F is in the 28 of SU(8), A in the 63, and� is in the 70. The
matrix M can act on V where here A maps F → F or F → F
while � map F → F or F → F . The matrix M then represents
the 56 of E7.
We can now consider turning on two holonomies, one with

A = i I, � = 0 and another with A = 0, � �= 0. These commute
up to the center of E7. The first holonomy breaks E7 to SU(8). To
determine the centralizer of the second inside SU(8) we need to
choose a specific�.We note that these induce the transformation
28 → 28, which is just the complex conjugation outer automor-
phism of SU(8). So the problem reduces to finding the possible
subgroups that are invariant under this outer automorphism. It
is again known that there are different choices depending on how
one realized the outer automorphism. We can again employ the
Kac prescription to determine the possible groups, but for our
purposes only two suffice. These two are just the natural choices
USp(8) and SO(8), which are the two real simple subgroups of
SU(8). The latter in particular appears prominently in this article.

C.4. Central Fluxes and Riemann Surfaces with Punctures

So far we only discussed the effect of the central fluxes when the
Riemann surface is closed.However we encounter also situations
with surfaces with punctures. Particularly consider the tubes we
introduced. Many of these have fractional fluxes that require cen-
tral fluxes for consistency, and we can ask how are these mani-
fested in the tube.
The central fluxes require two almost commuting holonomies.

One of these holonomies must surround the puncture while the
other must stretch between the punctures. Let’s start with the
one around the puncture. It is known that punctures require an
holonomy around them.[10] It is this holonomy that breaks part
of the internal symmetry and effect the structure of the confor-
mal manifold. So the presence of the holonomy is not special but
rather generic. It should be noted that there are different choices
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for this holonomy and two punctures may have holonomies, pre-
serving the same symmetry, but embedded differently. These are
said to have different color, and connecting them leads to a break-
down of some of the global symmetry.
Now we turn to the second holonomy stretching between the

two punctures. Due to homotopy relations, the holonomy around
one of the puncture must be equal the holonomy around the
other conjugated by the holonomy stretching between them, but
this holonomy must not commute with the holonomies around
the punctures. Therefore, we see that the holonomies around the
two punctures must differ by the action of the second holonomy
and somust have different colors. Thus, to conclude, there is a re-
lation between central fluxes in tubes and the difference in colors
between the two punctures of the tube.
For example, consider the E7 tube. We have presented a pair

of almost commuting elements in the previous section. One of
these, the one with � = 0, preserves only an SU(8) subgroup of
E7. This is the same as the punctures and so is natural to as-
sociate it with the holonomy around the puncture. The second
element acts on the SU(8) by complex conjugation. Thus, we see
that the presence of the central fluxes ismanifested in the tube by
whether the two punctures are the same or differing by complex
conjugation of the SU(8). Indeed in the basic tube the punctures
differ exactly in this way and we indeed have central flux. Gluing
an even number of these eliminate the central fluxes and indeed
when these are not present the colors of the two punctures are
the same.
A similar discussion can be entertained also in the case of the

other tubes, where the presence of the central fluxes necessitates
a difference in color between the two punctures. This should also
have generalizations to more punctures and higher genus. We
shall not analyze these cases here.

C.5. Summary

Finally we wish to summarize the discussion here:

– The quantization of flux depends on the global structure of the
group G.

– Adopting a normalization where the minimal charge is 1, the
fluxes inU(1)’s are integers. However fractional fluxes may be
possible if the subgroup inside G is not a direct product of the
U(1)’s and the preserved non-abelian groups.

– In many cases consistency of such fractional fluxes necessi-
tates the introduction of fluxes in the center of a non-abelian
symmetry. This can be accommodated by a pair of almost com-
muting holonomies. Such a pair however will break the global
symmetry. The preserved global symmetry depends on the
choice of holonomies, where, depending on the choice, differ-
ent subgroups can be preserved.

– If G is not simply connected one can also incorporate a non-
trivial Stiefel-Whitney class. This again can be accommodated
by a pair of almost commuting holonomies. Again this will
result in breaking of G to a smaller group.

– The presence of almost commuting holonomies on a tube is
manifested through a difference in the colors of the two punc-
tures.

Appendix D: The Te Model

Let us here give the index of the Te model. We will encode the
information in the supersymmetric index written as an integral
over elliptic Gamma functions. From this expression one can de-
duce the Lagrangian of themodel and the computation of anoma-
lies. The index can be written as,

Ie = e

(
(q p)

1
2 t

(
1
β2

v2

)±1
v±1
1

)
e (

q p
t2

)

× (p; p)(q ; q )
∮

dz
4π iz

e

(
(q p)

1
2

t2 (β2v−1
2 )±1z±1

)
e (z±2)

× e (tz±1v±1
1 )I0(c,w,

√
zv2,

√
v2/z). (D.1)

We have defined,

I0(z, v, a, b) = (p; p)2(q ; q )2
∮

dw1

4π iw1

∮
dw2

4π iw2

e

(
(pq )

1
2

t2 w±1
1 w±1

2

)
e (w±2

1 )e (w±2
2 )

× e ((q p)
1
4 tβb−1w±1

1 z±1
1 )e ((q p)

1
4 βbw±1

1 z±1
2 )

× e ((q p)
1
4 tβ−1bw±1

2 z±1
1 )e ((q p)

1
4 β−1b−1w±1

2 z±1
2 )

× e ((q p)
1
4 tβ−1aw±1

1 v±1
1 )e ((q p)

1
4 β−1a−1w±1

1 v±1
2 )

× e ((q p)
1
4 tβa−1w±1

2 v±1
1 )e ((q p)

1
4 βaw±1

2 v±1
2 ).

(D.2)

The fugacities c1, w1, and v1 encode the three SU(2) symmetries
associated with the punctures. The fugacities w2, v2, c2, and β2

parametrize the SO(8) and t the additionalU(1). The index I0 is
the index of a Lagrangian theory, SU(2)2 gauge theory with five
flavors for each gauge node. The charges of fields can be read
from the expression of the supersymmetric index, and from the
charges one can deduce the superpotentials. We then tune the
coupling of the IR fixed point to a locus whereU(1) a

b
enhances to

SU(2) and gauge it with additionalmatter which can be read from
(D.1), with the charges and the superpotentials again deduced
from the index.

Appendix E: Formula for Relevant and Marginal
Deformations

Compactifying six dimensional theories on a Riemann surface
with flux there is a certain very general class of relevant and
marginal deformations of the resulting four dimensional theo-
ries which can be predicted to exist following simple geometric
considerations. We refer to [31] for details and here we just give
the formulas we use in the bulk of the paper. Consider a six di-
mensional theory with symmetry group G and discuss compacti-
fication on a genus g Riemann surface. For simplicity we choose
to turn on flux for one U(1) (which we denote by U(1)a) in G
but the results can be easily generalized for any value of flux. We
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denote the value of the flux by Fa (and we assume it is positive)
and by G′ ×U(1)a the group preserved by the flux. Next, we con-
sider decomposition of the character of the adjoint representation
of G to G′ ×U(1)a representations,

χad j (G) =
∑
i

aqi χRi (G
′). (E.1)

Here qi is theU(1)a charge of the representation Ri appearing in
the decomposition of the adjoint representation of G to G′ rep-
resentations. By definition of G′ there are two representations
appearing in the above sum with charge zero, adjoint of G′ and a
singlet of G′. The claim of [31] is that for general choice of genus
g and flux Fa the index of the four dimensional theory written
with six dimensional R charge is,

I = 1+
⎛
⎝ ∑

i |qi<0
χRi (G

′)aqi (g − 1− qiFa)

⎞
⎠ q p

+ (
3g − 3+ (1+ χad j (G′))(g − 1)

)
q p

+
⎛
⎝ ∑

i |qi>0
χRi (G

′)aqi (g − 1− qiFa)

⎞
⎠ q p + · · · . (E.2)

The first term will give relevant deformations with superconfor-
mal R symmetry of four dimensions, the second term marginal
deformations, and last term irrelevant deformations. For low val-
ues of genus and flux this formula might get adjustments, but in
general we expect it to be correct, see [31] for details.
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