Paper news
Our paper on Riemann zeta has just been accepted !
Ut aliquet tempor quam, sit amet congue libero dignissim viverra. Proin rhoncus enim ac tincidunt tincidunt. Duis sapien magna, facilisis vitae dapibus at, lacinia quis turpis. Morbi orci tortor, tincidunt a tempor ullamcorper,
New relations for the Riemann zeta function (RZF) by defining supplementary partial product functions are developed in this paper. Relations are based on partial products of prime numbers with recourse
to product form of the RZF found by unique factorization in Z. This paper is in pursuit of generating new identities involving RZF including summations, products, and limits mostly in the matter of
multiplicative property of Euler products and by applying Taylor series. This is done with the intention
of relating some classical and newly defined functions (using multiplicative Jordanís totient function and
primorial sequence) to RZF in the form of theorems and proofs.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed dapibus tempus semper. Phasellus pellentesque nisl in interdum laoreet. Duis ullamcorper magna id elit ullamcorper sagittis. Mauris imperdiet ornare tortor sit amet egestas. Ut aliquam nulla ante, blandit malesuada tortor semper sit amet. Etiam finibus, felis eu aliquet mattis, ante risus venenatis metus, eget facilisis elit sapien ut arcu. Donec sit amet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Phasellus at blandit orci. Praesent nulla neque, lobortis sed scelerisque quis, varius a arcu. Etiam risus mauris, tempus sit amet dolor vel, tristique fermentum libero. Ut tincidunt, sem quis tristique pulvinar, odio risus sodales ipsum, quis condimentum tortor lacus eget ex. Praesent ultricies ultricies lectus. Quisque ut purus at lorem egestas elementum sit amet ac nibh.